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ABSTRACT

The purpose of this research is to develop an analytical model for the Coordination
Level of Intelligent Machines, which, with the mathematical formulation for the
Organization Level and the well developed control theory, would complete a mathematical
theory for Intelligent Machines. The current progress toward such an analytical model is
presented in this proposal. The framework of the Coordination Level investigated consists
of a dispatcher, a set of coordinators. A formal model, called coordination structure, has
been developed to describe analytically the information structure and information flow for
the coordination activities in the Coordination Level. Specifically, the coordination structure
offers a formalism to

« Describe the language (or task plans) translation characteristics of the
dispatcher and the coordinators,

« Represent the individual process within the dispatcher and the
coordinators, especially their concurrency and conflict,

« Specify the cooperation and connection among the dispatcher and the
coordinators,

« Perform the process analysis such as deadlock-free, boundedness, etc, for
the Coordination Level,

- Provide a control and communication mechanism for the simulation and
real-time monition of the task processes in the Coordination Level.

A simple scheduling procedure for the task scheduling in the coordination structure
is suggested. The task translation in the coordination structure is achieved by probabilistic
learning processes. The learning processes are measured with Entropies and their
convergence is guaranteed. A case study for a simple intelligent manipulator system is
described, where a simple coordination structure with one dispatcher and three coordinators
is built. The simulation of the task processes performed verifies the soundness of the
theoretical results developed so far. Finally, we summarize the results with conclusion§ and
give suggestions for the future research focuses on the modeling of Coordination Level of
Intelligent Machines.



1. Introduction

In this early stage in the development of Intelligent Machines, methodological
issues are both open and central. Different ideas for the formalization of the definitions and
the structure of Intelligent Machines have been proposed by and debated among various
researchers [Albus 1975, Saridis 1977, Bejczy, Meystel, Stephanou, Pao, 1986, Vamos
1987, Antsaklis et al 1988]. The approach proposed by Saridis (1977) can be thought as
the result of the intersection of the three major disciplines of Artificial Intelligence,
Operation Research, and Control Theory.

The structure of Intelligent Machines is defined by Saridis (1977, 79-80, 83, 85,
87) to be the structure of Hierarchically Intelligent Control Systems, composed of three
levels hierarchically ordered according to the principle of Increasing Precision with
Decreasing Intelligence (IPDI) [Saridis and Stephanou 1977, Saridis 1988], namely:
the Organization Level, performing general information processing tasks in association
with a long-term memory; the Coordination Level, dealing with specific information
processing tasks with a short-term memory; and the Execution Level which performs
the execution of various tasks through hardware using feedback control methods (Figure
1.1). A mathematical theory for Intelligent Machines has been presented in a recent paper
by Saridis and Valavanis (1988), where the mathematical formulation for the Organization
Level was developed.

The Coordination Level of an Intelligent Machine is an intermediate structure
serving as an interface between its Organization Level and Execution Level for dispatching

organizational information to execution devices. Its objective is the actual formulation of the
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control problem associated with the most probable complete and compatible plan
formulated by the Organization Level that will execute in real-time the requested job
[Saridis and Valavanis 1988]. The purpose of this research is to develop an analytical
model for the Coordination Level of Intelligent Machines, which, with the mathematcal
formulation for the Organization Level and the well developed control theory, would
complete a mathematical theory for Intelligent Machines. It should be noted that a model for
the Coordination Level is not required to represent how the coordination activities are
actually realized in detail, however, any valid model should at least provide a control and
communication mechanism for the coordination. This control and communication
mechanism will enable the establishment of the information structure which specifies the
necessary precedence relationship for the relevant information processing in the
Coordination Level, and the formulation of the information flow which characterizes the

actual decision-making activities for the achievement of the coordination objective.

This report presents the current progress toward such analytical model. The
framework of the Coordination Level investigated consists of a dispatcher, a set of
coordinators. A formal model, called coordination structure, has been developed to
describe analytically the coordination activities among the dispatcher and the coordinators
of a Coordination Level [Wang and Saridis 1988]. The use of this coordination structure

enables us to

1. Describe the language (or task plans) translation characteristics of the

dispatcher and the coordinators.



2. Represent the individual process within the dispatcher and the
coordinators, especially their concurrency and conflict.

3. Specify the cooperation and connection among the dispatcher and. the
coordinators .

4. Perform the process analysis such as deadlock-free, boundedness, etc for
the whole Coordination Level.

5. Provide a control and communication mechanism to be used for
simulating and real-time monitoring the task process in Coordination

Level.

Points 1 and 2 are accomplished by using Perri ner transducers as the models for the
dispatcher and the coordinators. A Petri net transducer is capable of performing the
language translation and, like a Petri net, can describe the parallelism and conflicmess
(point 2). The cooperation and connection among dispatcher and coordinators are specified
by the connection points and the receiving and sending mappings of the coordinaton
structure (point 3). Point 4 is realized within the context of Petri net theory, since various
concepts and analysis methods have developed for Petri nets to deal with the deadlock,
boundedness, and other process properties. The standard execution rule in Petri net theory
provides the base for the construction of Petri net controllers, which can be used to control
and monitor the coordination processes in the dispatcher and the coordinators in real-ume
(point 5).

The report is organized into seven chapters. Chapter 2 reviews the distributed
problem solving system theory. Three major approaches for the distributed problem

solving systems in Distributed Artificial Intelligence and the several formal models for the



distributed systems in computer science and control theory are discussed in this chapter.
Petri net and Petri net language theory is introduced in Chapter 3, where the basic concepts
of Petri net, the closure properties of Petri net language and its relationship with other
formal languages, are described through the definitions and examples. Chapter 4 presents
the major results of this report, the definition and properties of the coordination structure. A
uniform architecture for the dispatcher and the coordinators, the Petri net transducer models
and their synchronous compositions are included in this chapter. Chapter 5 investigates the
task scheduling and task translaton in the coordination structure. A simple scheduling
procedure based on the execution rule of Petri nets is suggested. The task translation is
achieved using a probabilistic method with learning ability. The learning process is
measured by Entropy and the learning convergence theorems are given. A case study for a
simple intelligent manipulator system is described in Chapter 6, where a coordination
structure is built for a dispatcher with three coordinators and the simulation of the task
process in this coordination structure is performed. Finally, Chapter 7 summarizes the
report with conclusions and gives suggestions for the future research focuses on the

Coordination Level of Intelligent Machines.



2. Literature Review on Distributed Problem Solving Systems

The Coordination Level of Intelligent Machines is inherently a distributed problem-
solving system, and, as all the distributed problem-solving systems, the key issue in the
Coordination Level is the mechanism of the coherent control and communication of various
processes in the system [Yang et al 1985, Decker 1987, Saridis 1988)]. Considerable
amount of work has been done during the past two decades for the distributed problem-
solving. Basically, two different kinds of approaches have been used: the approach in
Distributed Artificial Intelligence (DAI) and the approach in the theoretical computer science
and control theory. The approach taken in DAI is more emphasized in the development of
the actual distributed problem-solving systems, much of the effort is devoted into the
system programming. One the other hand, the approach taken in the theoretical computer
science and control theory is more interested in the specification of the formal process of
distributed problem-solving systems, its emphasis is on the building of the formal models
and the analysis of the properties of the systems. We will review the some key methods

and models in these two approaches briefly in the following two sections .

2.1 Distributed Problem Solving Techniques in Distributed Artificial

Intelligence

Several approaches for the coordination among the cooperating nodes of a network
system have been suggested in the DAI The three major important approaches are called
multi-agent planning, negotiation, and the functionally-accurate, cooperative (FA/C)

approaches. In the multi-agent planning approach, the agents typically choose an agent



from among themselves (perhaps through negotiation) to solve their planning problem and
send this agent all pertinent information. The planning agent forms a multi-agent plan that
specifies the actions each agent should take and the planning agent distributes the plan
among the agents. Since the multi-agent plan is based on a global view of the problem, the
important interactions between agents can be predicted and synchronized around [Corkill
1979, Futo and Gergely 1983, Georgeff 1984]. The main problem with the multi-agent
planning approach is that achieving a global view of the problem might be tme consuming
and communication intensive, and the performance of the entire agent system depends on
the planning agent and would be compromised if that agent fails. In the negotiation
approach [Smith 1981a, Smith and Davis 1981, 1983}, a node will decompose a problem
task into some set of subtasks and will assign these subtasks to other nodes (for parallel
execution) based on a bidding protocol [Smith 1981b]. Since nodes may have different
capabilides, the bidding protocol allows a subtask to be assigned to the most appropriate
available node However, since the nodes that are already working on subtasks are not
available to bid until they have finished their tasks, it may cause the problem that a node
which is awarded one subtask may thus be unavailable to perform a subsequently formed
subtask despite being the best node for the task. If the node had been able to predict that a
more coherent subtask might soon be formed, the node would not have bid on the earlier
subtask so that it would be available later. The inability of nodes to make such predictions
can therefore cause incoherence in the problem solving system: the nodes could make a
" more coherent team and improve their overall performance if they could assign subtasks to
nodes better. In the functionally-accurate, cooperative (FA/C) approach to the distributed
problem solving [Lesser 1981, Corkill 1983], nodes cooperate by generating and

exchanging tentative, partial solutions based on their limited local views of the system



problem. By iteratively exchanging their potentially incomplete, inaccurate, and
inconsistent partial solutions, the nodes eventually converge on an overall system solution.
To cooperate coherently, the nodes would need to predict what partial solutions would be
exchanged in the future and when, so that they could modify their problem solving
activities to form compatible partial solutions. To make these predictions, each node needs
to understand its own plans and the plans of the other nodes. Without this understanding,

nodes may require much more time to converge on a solution since they may work at cross-

purposes.

Prediction is therefore crucial for coherent cooperation. While multi-agent planning
requires accurate predictions before it can form acceptable plans, the negotiation and the
FA/C approaches can perform despite a lack of adequate predictions, but incoherence can

degrade their performance.

One problem of applying the DAI approaches for the distributed problem solving in
the mathemartical theory of Intelligent Machines is the lack of the analytical models for these
approaches. The emphasis of the DAI approaches is heavily on the system programming,
and the system behavior is usually described declaratively in some loose terms, instead of
being specified formally in terms of the well defined models. Therefore the formal models
for the distributed coordination processes in the Coordination Level of Intelligent Machines
have to be investigated and developed. However, the distributed problem solving
techniques in DAI can provide useful guidances for the system organization and

architecture of the Coordination Level.



2.2 Formal Models for Distributed Systems

The modeling of the distributed systems had been one of the central issues in
computer science for a long time [Peterson 1973, Milner 1980, Hoare 1985]. In the control
theory, some relevant works are conducted recently under names of Discrete Event
Systems (DES) [Ramadge and Wonham 1982, Inan and Varaiya 1988], Discrete Event
Dynamical Systems (DEDS) [Ho and Cassundras 1983], and Decision Schema [Saridis
and Graham 1984].

Numerous theoretical models of concurrency, which can be used in DPS, have
appeared in the computer science literature during the past 25 years: Dijkstra (1986a and b),
Petri (1973), Campbell and Habermann (1974), Brinch-Hansen (1978), Hoare (1978),
Hewitt (1979), Puneli (1979), Milner (1980), Steenstrup et al (1983), and Trakhtenbrot et
al (1988), to menton a few. The purpose for which the various models have been
developed includes the following: to facilitate the investigation of the behavior of
concurrent processes, to aid in the designing of concurrent systems, to illustrate specific

process synchronization problems, and to verify the correcmess of parallel programs.

Milner (1980) has introduced an elegant calculus of synchronized communicating
processes to express the behaviors of concurrent systems up to observation equivalence,
and to provide various proof techniques. Note that Milner's approach to the semantics of
concurrency is considerably more operational than the approach used in Milne-Milner
(1979). The theory of communicating sequential processes developed by Hoare (1985) has

been based on the ideas that input and output should be basic pnimitives of processing and



that parallel composition of communicating sequential processes is a fundamental process
structuring method. It has been found that, when combined with a development of
Dijkstra’s guarded command, these ideas are surprisingly versatile. It should be noted that
a major difference between the models of communicating sequential processes and the
models of automata (e.g, the finite automata) is that in communicating sequential processes
the primitive notion is that of a trace (behavior of the process) while the notion of state is a
derived concept, whereas in the classical automata the primitive notions is that of state from

which the trace is derived.

An elegant application of Hoare's theory in the modeling of the discrete event
systems has been suggested by Inan and Varaiya (1988), where a new class of discrete
event models called finitely recursive process (FRP) was introduced. It is claimed that the
FRP offers a formalism for the discrete event systems that is superior to that of finite state
machines. The basic idea in the FRP is to use a set of primitive functions to construct the
general and complex process by using recursive equations. It is clear that the fixpoint

theory has played the key role in the proof technique of FRP.

The FRP formalism seems to be very attractive and promising, however, since only
preliminary work has been done in this direction, it is still not clear how far and how well
FRP can go in incorporating the methodologies of the classical continuous control theory in

the representation of discrete event systems.

One of the most popular tools in the modeling of concurrent process systems and

discrete event systems, especially in manufacturing systems, is Petri net model [Al-Jaar and



Desrochers 1987, Chang et al 1987-88, Krauss 1988, Stotts 1988, Yau 1988, Zhou et al
1988]. The major advantage of Petri net model is that it can represent the commonsense
logic formally in a quite natural way. The relatively straightforward graphical representation
and the various available analytical tools for analyzing the system structure properties are
also very helpful in using Petri net to model the systems. Much work has been done in
applying Petri net models in the modeling of robotic system and process control [Bourbakis
1987, Cai 1987, Komoda 1984, Krogh 1988], decision-making [Ghalwash 1987-88,
Levis 1988], performance evaluation [Narahari 1987, Al-Jaar and Desrochers 1988].
However, it should be noted that, upon to this point, no application of Petri net models in
the specification and analysis of the distributed testbeds developed in robotic systems and
process control, say, [Hayward 1988, Ionescu 1988, Karsai 1988, Lee 1987, Lee
1985,88, Pang 1988], has been made.

The focus of this research is on using Petri net to model and analyze the
coordination processes in Coordination Level of Intelligent Machines. It is interesting to
investigate the possibility and advantage of using the more general FPR formalism for this
purpose, and this will be conducted in the next step.

10



3. Petri Nets and Petri Net Languages

In this chapter we introduce Petri net and Petri net Language theory. Section 3.1 is
about the basic concepts of Petri nets, and Section 3.2 is on the Petri net language theory.
These materials are quite standard and come mostly from Peterson (1981), except some

modifications on the notations and the definition of Petri net language.

3.1 Basic Concepts of Petri Nets

In this section, we give a brief introduction to Petri net theory through some
definitions and examples. Note that although only the ordinary Petri nets are treated here,
we will use the concepts in the colored Perri nets frecly later in our model for the
Coordination Level, since it has been proved that as long as the number of colors is finite,
the colored Petri net model is equivalent to a (much large) ordinary Petri net [Peterson
1980]. The detail descriptions of the colored Petri nets and another high level Petri net, the

predicatel/transition nets, can be found in [Jensen 1981, Genrich and Lautenbach 1981].

Petri nets are tools for modeling the dynamic behavior of discrete event systems.
They consist mainly of two types of elements: places and transitions. The set of places
represents the system' s states, and the transitions represent events which change the state
of the system. A place can contain a non-negative integer number of tokens. The state of
the system modeled by a Petri net is given by its marking, i.e., the number of tokens in
each of its places. The system evolves by firing its transitions according the execution rule,

as described below.

11



Definition 3.1: A Perri ner (PN) is a quadruple N=(P, T, I, O) where:
1) P and T are finite sets of places and transitions, respectively, such that
PNT=¢ and PNTz9,
2) I PxT — Zis the input function,
3) O: PxT — Z s the output funcrion,

where Z is the set of natural numbers.

A PN can be represented by a bipartite directed multigraph, the Petri net graph. Places
are represented by circles and transitions by bars. There is an arc joining a place p to a
transition t iff I(p,t)=0, and p is called the input place of t. Analogously, there is an arc
from a transition t to a place p iff O(p,t)=0, and p is called the output place of t. Natural
numbers I(p,t) and O(p,t) are called the weights of the arcs. Arcs are labeled with their
weights. Labels will be omitted if the arc's weight is equal to one (Figure 3.1).

For convenience, let the places be numbered P1, P2; .-, Pm, m=IPl, in some unique
way. We introduce two vectors I(t)e Zm and O(t)e Z™ to represent the input and output
function, that is, I(t) is a vector with its i-th coordinate being I(p;,t) and O(t) is a vector
with its i-th coordinate being O(p;,t). Expressions pe I(t) and pe O(t) are used to indicate

that p is an input place of t and p is an output place of t.

Definition 3.2: A marking m of a PN N is a function m: P — Z. It gives the

number of tokens contained in each place peP.

A token can be represented by a dot. Figure 3.1a shows a PN with its initial

marking my(p1)= mg (p2)=1, mgy (p3)= 0. The marking can be more briefly expressed as a

column vector in Zm, e.g., my =(1 1 O)T.
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Fig. 3.1 A Marked PN (a) Before (b) After Firing )



Definition 3.3: A transition t is enabled wrt a marking m iff: m2I(t), i.e.,

for all pe P, m(p)21(p.t).

In figure 3a, only transition t; is enabled and, in figure 3b, t; is enabled.

Definition 3.4 (execution rule): Firing an enabled transition t consists of
removing I(p,t) tokens from each input place p and adding O(p,t) tokens to each
output place p. Let my be the new marking resulted from firing t under the
marking my, then, m;=mg + O(t) - I(t), i.e., for all pe P, m;(p)=mg (p) +
O(p.,») - I(p,1).

Figure 3.1b shows the marking of the PN N after firing the enabled transition t;.
The marking reached is m;=(0 0 1)T.

Fora PN N with marking m, two transitions t; and t; are said to be in parallel wrt
m iff I(t;) + I(t2)<m. Two transitions are said to be in conflictr wrt to m if I(t;)<m,
I(t2)<m, and I(t;) + I(t2)>m. By the execution rule, two transitions in parallel can be fired
simultaneously, however, only one of the two transitons in conflict can be fired and its

firing will disenable the other. Figure 3.2 gives two examples of the parallel and conflict.

Let m be the marking reached from mg by applying the firing sequence s, mg —s

— m. If y is the count vector of s (i.e., y represents the number of times each transition has
been fired in s), then m can be expressed by the state equarion

m=mg + Ay
where A=0 - I =[a(p,t)], a(p,t)=0(p,t) - I(p,1), is called the incidence matrix of the Petri
net. In the example of figure 3.1,

13



(a) (b)

Fig. 3.2 Two Transitions are in (a) Parallel and (b) Conflict



and if s=tjtyty, i.e., then y=(2 1)T, leads to the marking m=mg + Ay =(0 0 1)T,

The state of a PN is defined by its marking. The firing of a transition represents a
change in the state of the PN by a change in the marking of the net. The state space of a PN
with m places is the set of all markings, i.e., Z™. The change in state caused by firing a

transition is described by the next-state function defined as

Definition 3.5: The next-state function &: Z™xT — Zm for a Petri net N=(P,T,
I,O) with marking m and transition te T is defined iff t is enables by m. If
o(m,t) is defined, then, &(m,t)=m + O(t) - I(t).

The set of all markings reached from a marked PN is called the reachability set of
the marked PN, which is formally defined as

Definition 3.6 (reachability set): The reachability set R(N, m) (or, R(m) when N
is clear) for a PN N with initial marking m is the set of all markings of N which

can be reached from m by firing a finite number of transitions of N.

Let T* denote the set of strings over T and A denote the empry string (the string

with zero length). The definition of the next-state function d can extend to strings in T" in a

14



obvious way: &§(m,tot)=8(3(m,t),cr), S(m,\)=m, te T, oe T*. We will use the next-state

function under this extended definition.

Two sequences result from the execution of a PN: the sequence of markings (mg,
mj, my, ...) and the sequence of transitions (tio. tir tige ...). These two sequences are

related by the relationship S(mk,tik)=mk+1 for k=0, 1, 2, .... Both of these sequences

provide a record of the execution of the PN, one is about the state transformations, and the
other is about the corresponding system actions. Corresponding to reachability set, we use
L(N, m) (or, L(m) when N is clear) to denote the ser of all possible sequences of
transitions for a Petri net N with the marking m. Note that, for a system modeled by a PN
N, L(N,m) characterizes the system behavior in the sense that ail possible sequences of
the system actions are specified by the sequences in L(N,m), which is extremely

importance in system designing, analyzing, and implementing.

The following are some of the properties and questions that have been studied in the
literature about Petri nets [Al-Jaar and Desrochers 1987]. Later we will use these properties

to analyze the behavior of the Petri net model for Coordination Level.

1) A deadlock in a PN occurs when a marking is reached where no transitions in the
net can be fired from that point on.

2) A PN is live wrt a marking m if, for any marking in R(m), it is possible to fire
any transition in the net. Liveness guarantees the absence of deadlocks.

3) A PN is reversible or proper wrt a marking m if for every m'e R(m),
me R(m"). Reversibility guarantees that the system modeled by the PN can re-

initialize itself. This is very important for automatic error recovery.
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4) A PN is bounded wrt a marking m if there exists a finite number k such that for
any marking in R(m) the number of tokens in each place of the PN under that

marking is less than k. When k=1, the PN is safe.

It is easy to show that the PN in figure 3 is live, reversible, and safe, therefore it is

deadlock-free and bounded.

3.2 Petri Net Languages and Their Closure Properties

The Petri net language (PNL) defined by a PN is intend to characterize the behavior
of the system modeled by the PN through the specification of action sequences of the
system. Although various formulations for PNL have been suggested [Peterson 1976], in
order to be consistent with the definition of Petri net transducer introduced later, we
present a general unified definition for PNL which will reduce to the existin g formulations

by placing the appropriate restrictions.

The PNL is defined as

Definition 3.7: A Perri net language (PNL) generated by a /labeled
Petriner  y=(N, Z, B, W, F) is a set of strings over T defined by
L(M={B(o)e =71 5(4, ) F}
where
(i) N=(P, T,I, O)is a Perri ner with the initial marking L
(ii) Zis a finite alphabet;
(iii) B: T — (TU{A}) is a labeling funcrion;
(iv) F C R(u) is a set of the final markings.
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Different types of PNL can be obtained by considering various restrictions placed

on the labeling function § and the final marking set F. The following three kinds of labeling

function and four kinds of final marking set are suggested in the literature:

Labeling function:
(i) free labeling function B: B(t)=A, B(ty)=B(ty) if tyty;
(ii) A-free labeling function B: B(t)#A;
(iii) A—transition labeling function P: no restriction on §;
Final marking set:
(i) FisL-type ifF is a finite set of markings in R(u);
(ii) Fis G-type if F={me R()l m2m; for some i, i=1, ...,n};
(iii) F is T-type if F={me R(u)! m is a deadlock marking of PN};
(iv) Fis P-type if F=R(u).

A labeled Petri net with a free labeling function is called a free-labeled Petri net, a
labeled Petri net with a L-type final marking set is called a L-type labeled Petri net, and the
corresponding PNL is called a L-zype Petri net language, and so on. There exist 12 classes
of PNL resulting from the cross product of the three types of labeling functions and the
four types of the final marking specification. Figure 3.3 gives the known relations among
the classes of PNLs.

In Figure 3.4, the inital marking of the labeled PN is p=(1, 0, 0, 0)T, and each
transiton t is labeled by the free labeling functon B(t). Then

(i) IfF=((0, 0, 1, 0)}, the L-type PNL is {ancbl n>0};
(ii)) If F={ml m>(0, 0, 1, 0)}, the G-type PNL is {amcb?l m=n=>0};
(iii) The T-type PNL is {amcbdl m>n=0};
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(iv) The P-type PNL is {am m>0}uU{amcbnl m2n>0}u{amcbrdl m>n>0}.

We will just consider L-type PNL in this report. It can be shown that every L-type
PNL can be generated by a standard form Perri net defined as [Peterson 1981]:

Definition 3.8: A labeled PN y=(N, Z, B, i1, F) with PNL L(y) in standard form
satisfies the following propertes:
(1) The initial marking 1 consists of exactly one token in a start place ps and
zero tokens elsewhere. p,g O(t) for all te T
(ii) There exists a final place pssuch that
(@) F=(pr} if Ae L(y) or F=(ps, pe} if Ae L(y),
(b) peI(t) forallteT,
(c)8(m,t) is undefined for all te T, and me R(p) which have a token in p¢

(i.e., m(pg)>0).

The use of the standard form labeled Petri net usually can simplify the analysis. The
L-type PNL generated by the labeled PN in standard form of Figure 3.51is {anbrcn| n>0).
Since it can be showed easily by pumping lemma that {anbacn| n>0} is not a context-free
language, the result indicates that PNL is not a subset of context-free languages. It has also
be proved that the context-free language {xxRI xe Z* with [Z122, and xR is the reversal of
x} cannot be generated by any labeled PN, that is, PNs are not capable of remembering
arbitrarily long sequences of arbitrary symbols. The two results together indicate that Petri
nets are a new type of automata. However, it is easily to show that a bounded Perri ners is
equivalent to the finite state machines derived from its finite reachability ser. Neglectin g the
empty string A, PNL is a strictly a subset of context-sensitive language [Peterson 1973].

The relation between PNL and other formal languages has been studied by several
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researchers [Reghizzi 1977, Vak 1981]. Figure 3.6 presents the relationship of PNL to the
traditional classes of phrase structure languages.

The closure properties of PNLs can be summarized as follows:
(i) Concatenation: If L; and L, are PNLs, then
L; Lo={x1x2l x;€ Ly, x2e L} is a PNL.
(ii) Union: If L, and L, are PNLs, then
L,u Ly=(xIxe L, orxeL;} is a PNL.
(iii) Intersection: If L, and L; are PNLs, then
L;n Ly={xi xeL; and xeL,} is a PNL.
(iv) Reversal: If L is a PNL, then
LR=(xRl xeL} is a PNL.
(v) Concurrency: If L; and L; are PNLs, then
Ly ILy=(x,lixal x;€ L), x2€ Ly} is 2 PNL.
(vi) Substitution: If L is a regular language and L; is a PNL, then the
result of substituting L, for a symbol in L, is a PNL.

The reversal operator and concurrent operator used in (iv) and (v) are defined as

AR=A, (ax)R=xRa, ae X, xe I*;

xllA=Allx=x, xeX*, (ax)l(bxy)=a(x1lIbxs) + b(ax,llx;), a,be Z, x;, x2€ *;

It follows from (vi) that PNLs are closed under finite substitution and
homomorphism. PNLs are not closed under indefinite concatenation (Kleene star) and the
general substitution, and the closure under complement for the L-type PNLs is still an

open problem.
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4. The Model for Coordination Level: Coordination Structure

In this chapter, a formal model, called coordination structure, is introduced to
describe mathematically the information structure and information flow in the Coordination
Level of Intelligent Machines. Section 4.1 presents the framework for Coordination Level
upon which the coordination structure is based. Section 4.2 introduces a new type of
transducer, Perri net transducer, which will be used as the model for the dispatcher and the
coordinators. Section 4.3 defined the synchronous composition of Petri net transducers.
The coordination structure and its operation are described in the section 4.4. The analysis

of the structural properties of the coordination structure is discussed in the section 4.5

4.1 The Framework of Coordination Level

The topology of the Coordination Level can be expressed by a tree structure CL
consisting of a dispatcher D, the root, and a finite set of coordinators C, the subnodes,
CL=(D,C)
For convenience, let the coordinators be numbered Ci, Cy, ..., Cp, n=IC), in some unique
way (Fig. 4.1). It is assumed that for each coordinator there exists a bidirectional link
connecting it to the dispatcher and there is no direct link between any two individual

coordinators.

The dispatcher D centrally located above all coordinators will deal with the conrrol
and communication of the coordinators. It concerns primarily the questions of which
coordinator(s) should be called when (task sharing) and which coordinator(s) should be
informed by the current status of task execution (resulr sharing), given a sequence of
primitive events (subtasks) by the organizer for some specific job. The control and

communication can be achieved by translating the given sequences of primitive events into
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the sequences of coordinator-oriented control actions containing the necessary information,
and dispatching them to the corresponding coordinators at the appropriate times, To this

end, the dispatcher requires the following capabilities.

* A communication facility that allows the dispatcher to receive and
send information from and to the Organization Level and
coordinators.

* A data processing ability which describes the command
information from the Organization Level and the feedback
information from coordinators, updates the current system status,
and provides information for the decision-making units of the
dispatcher.

* A task processing abiliry which identifies the subtasks to be
executed, selects the appropriate control processes for the
corresponding coordinators, and formulates the feedback required
by by the Organization Level.

* A learning ability that enables the dispatcher to improve its task
processing ability and reduces uncertainties in decision-making
and information processing as more task execution experience is

obtained.

Each coordinator C; centrally located above all devices associated with it will
process the operating and data passing of the devices. The coordinator can be considered
as an expert of deterministic functions in some specific field with the ability of selecting one
among alternative actions that may accomplish the same subtask issued by the dispatcher in
different ways according to the constraints imposed by the workspace model and timing

requirements. The operating and data passing of the devices can be achieved by translating
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the given coordinator-oriented control action sequences into real-time hardware-oriented
operation sequences containing the necessary data, and sending them to the devices.
Capabilities required by a coordinator are exactly the same as that for the dispatcher, but in
a lower and more specific level. Figure 4.2 illustrates the translation process among the
dispatcher and the coordinators. Note that the dispatcher and the coordinators actually have
the different time scale, one step in the dispatcher may turn out to be many steps in the

coordinators.

The coordinators have to cooperate under the supervision of the dispatcher in the
sense that no one of them has sufficient ability and information to accomplish the entire
task; mutual sharing of information is necessary to allow the dispatcher and the

coordinators, as a whole, to attack the requested jobs.

The above description also indicates that the dispatcher and coordinators may have
the identical organization at the different levels of specification. A uniform system
architecture, consisting of a data processor, a task processor, and a learning processor, for
the dispatcher and coordinators, is shown in Figure 4.3. This architecture is a direct

extension of the decision module suggested by Graham and Saridis (1982).

The function of the data processor is to provide the information about the tasks to
be executed and the current system status. It has been divided into three levels of
description: task description, state description, and data description. The relation among the
three levels is shown in Figure 4.4. In the task description, a list of subtasks to be executed
from the upper level units is given. The state description presents the preconditions and the
postconditions (i.e., the effects of execution) for the execution of each subtask and the
system status in some abstract terms. In Petri net model, the preconditions and the

postconditions can be described in terms of the input places and the output places,
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respectively. The data description gives the actual value for the abstract terms used in the
state description. Such an information organization is extremely useful for the hierarchical
decision-making, as can be seen next in the task processor. The maintenance and update of
the three level descriptions is manipulated by a moniror based on the information from the
upper level and the feedback of task execution from the next level. The monitor is also

responsible for the interconnection between the data processor and task processor.

The function of the task processor is to formulate the control command to the next
level. The task processor employs a hierarchical decision-making consisting of three steps:
task scheduling, task translation, and task formulation. The task scheduling identifies the
subtask to be executed by checking the task description and the corresponding
preconditions and postconditions contained in the state description without referring the
actual values. If no subtasks can be executed, the task scheduling has to determine the
internal operations which will make the preconditions for some subtasks to became true.
The task translation decomposes the subtask or inter-operation into the control actions in an
appropriate order based on the current system status. Finally, the task formulation
responses to assign the actual data to the control actions by searching in the data description
of the data processor, formulate the final complete control command, and send it to the next
level. With the hierarchical information description, such a hierarchical decision-making

should make the task processing fast and efficiently.

Upon the completion of all subtask required by the upper level, a monitor is called
to organize the feedback information to the upper level in some specified form. The monitor
is also responsible for the proper interconnection with the data processor and the leamning

processor.
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The function of learning processor is to improve the performance of the task
processor and to reduce the uncertainty in decision-making and information processing.
Information used for the leering processor is indicated in Figure 4.3. Various learning
mechanisms can be employed by the learning processor to achieve its function. A simple

linear refinement learning algorithm is used for task translation in the section 5.2.

The fact that the dispatcher and coordinators have the identical system architecture
but at different levels of specification (or abstraction) indicates that the Coordination Level
has a nested tree topology [Meystel 1986]. This nested tree topology can be extended
further to include the Execution Level.

The connection among the dispatcher and coordinators, i.e., the high level
abstraction of communication among them, will be specified in term of a Petri net derived

from the coordination structure, a formal model for the Coordination Level developed in the

section 4.4.

4.2 Petri Net Transducers (PNTs)

As has been seen in the above discussion, the basic function of the Coordination
Level can be viewed as the translation of the high level command language issued by the
organizer to the low level operation language executed by the hardware. It seems that the
automata, like finite transducer, pushdown transducer, and syntax-directed translation
schemata, etc, used in the translaton theory of formal language [Aho et al 1972] might
offer us promising tools for the modeling of the Coordination Level. Unfortunately, this is
not the case in genemally. Firstly, it is difficult to specify the connection among the
dispatcher and coordinators, quite an important issue in the Coordination Level, by using

automata. Secondly, it is inadequate to describe the concurrency of activities in the
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Coordination Level by using automata, since the primitive notion szate in automata is intend
to represent the situation of the entire system modeled at some instance, whereas the notion
of place in Petri net is just to describe the situation of a component of the system modeled.
These two problems can be overcome by Petri net model, since it has been shown in both
theory and applications that Petri net can enable, in a natural way, the specification of
connection among the subsystems and the description of concurrency and conflictness in
the systems processes. It is this observation leads to the motivation of developing a
translation tool in term of Petri net, called Petri net transducer, as the basic model for the

Coordination Level.

The Petri net transducer is defined as:

Definition 4.1: A Perri ner transducer (PNT), M, is a 6-tuple,
M=(N, I, A, o, 4, F) where
(i) N=(P, T, I, O)is a Perri ner with the initial marking ;
(i) Zis afinite inpur alphaber;
(iif) A is a finite outpur alphabet;
(iv) o is a translarion mapping from TX(ZU{A}) to finite sets of A*:

(v) FCR(u) is a set of final markings.

A PNT can be pictured as shown in Figure 4.5. There are three parts to a PNT: an
input tape, a PN controller, and an ourput tape. The behavior of a PNT can be conveniently
described in terms of configurations of the PNT. A configuration of PNT M is defined as a
triple (m, x, y) where me R(}1) is the current state (or marking) of the Petri net N; xe =* is
the input string remaining on the input tape with the leftmost symbol of x under the input

head; ye A* is the output string emitted up to this point.

25



122 .| Input tape

Input head

|Petri Net Controller

Output head

Output tape 1 2

Fig. 4.5 Petri Net Transducer (PNT)




26

A move by PNT M is reflected by a binary relation =y (or = , when M is clear)
on configurations. Specifically, for all me R(i), te T, ae ZU{A}, xe Z*, and ye A* such

that 8(m,t) is defined and o(t,a) contains ze A*, we write

(m, ax, y) = (8(m,t), x, yz)

We will use =* to denote the transitive and reflexive closure of =>. Note that the
PNTs defined here allow A-moves and are nondeterministic in both the firing of the next

transition and the emitting of the next output string.

The translation defined by M, denoted t(M), is the set T(M)=( ! (L,x,A) =*
(m,A,y) for some me F}. y is said to be an outputr of x or x is the inpur of y iff

(x,y)e t(M). The input language and the owrpur language of M are defined as

aM)={ xI there exists a ye A* such that (x,y)e T(M)}
and

@(M)=( yl there exists a xe £* such that (x,y)e T(M)}

respectively. Like other translation model, translation defined by a PNT will be called a

Perri net ranslation or Perri transducer mapping.

A PNT halts at configuration (m, ax, y) when no transitions for which o(t,a) is
defined are enabled at the current marking m. We call the m the deadlock marking of the
PNT. When a deadlock marking occurs, the input string will be rejected. Note that a
deadlock marking of PNT is not necessary a deadlock marking of its Petri net.



For any x=x;a;asx.€ Z* with (i1,x,e) =* (m,aja2x2,y), symbols a; and aj; are said
to be paralle! (or in conflict) iff there exist t; and tyin T such that o(t;,a;) and o(tp,a;) are
defined and t; and t; are parallel (or in conflict) with respect to the marking m. Two
symbols in parallel can be translated simultaneously, however, only one of the two
symbols in conflict can be translated and its translation will disenable the translation of the

other.

Before to PNTs as the models for the dispatcher and the coordinators, we have to
answer a fundamental question first: Can PNTs provide the consistent models for the
dispatcher and the coordinators ? In other words, is there the possibility that the output
languages of some PNTs cannot be further translated by any PNTs. If this is true, then it
may happen that the tasks issued by the dispatcher cannot be processed by any kinds of
coordinators, provided that PNTs are the only models for the dispatcher and the
coordinators.

To answer this question we have to investigate the language properties of PNTs.
For this end. let us consider a special class of PNTs, called Simple PNT (SPNT), with the

property that for any te T there exists one and only one ae ZU (A }such that o(t,a) is

defined. The following theorem indicates the importance of this type of PNTs.

Theorem 4.1: For any PNT M, there exists a SPNT M’ such that tM’)=1(M).

Proof: Let N be the PN of M=(N, I, A, o, 1, F), N=(P, T, I, O). For any te T, if
there exist two different a, and aje ZU{A} such that both o(t,a;) and o(t,az) are defined,
we then introduce a new transition t with I(t"Y=I(t), Ot")=0(t) and modify ¢ in a way such
that a(t',a2)=6(t,a;), o(t',a) is undefined for all other ae ZuU(A), and o(t,a,) is undefined.

Continuing this procedure until no transitions have more than two input alphabet in T for
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which ¢ are defined, we will finally get a SPNT M'=(N', I, A, &', #, F) with N'=(P, T,
I', O). The construction of M' clearly shows that T(M")=t(M). Q.E.D.

For a SPNT, we can define a labeling function [ associated with ¢ as

B: T -Zu(A}, B(t)=a, if o(t,a) is defined.

As in PN language, we have three classes of labeling functions:free labeling
functon for which B(t)=A, B(t))=B(tp) if t;#ty; A—free labeling function for which B(t)#A,
B(t1)=P(tp) if ty=ty; and A —labeling function for which no constraints are imposed. For a
SPNT M=(N, Z, A, o, i, F), the labeled PN y=(N, Z, B, u, F) is called the labeled Petri
net underlying M.

We classify the PNTs according to the following four types of specifications of the
final marking set F as in PN language.

(i) aPNT is L-type if Fis a finite set of markings in R(L);

(ii) a PNT is G-type if F={me R(u)! m=m,; for some i, i=1, ...,n};

(iii) a PNT is T-type if F={meR(u)! m is a deadlock marking of PNT's PN};
(iv) a PNT is P-type if F=R(}).

For SPNT there exist 12 classes of PN translations resulting from the cross product
of the four types of the final marking specification and the three types of labeling functions.

In this report we just consider L-type PNT.

Now we can characterize the language property of PNT by the following theorem:



Theorem 4.2: The input and output language of a PNT are both PN languages.

Proof: By theorem 4.1, we only need to consider the case for SPNTs. Let M=(N,
2, A, G, 1, F) be a SPNT and y=(N, Z, B, i, F) be the labelled Petri net underlying M.
The fact that input language is a PN language follows immediately from the equations
TM)=L(Y).

Let Y=(N, Z, B', i, F) be a labelled Petri net with a free labeling function

B' and L(Y") be its PN language. It is clear that ®(M) can be derived from L(Y) by
replacing the symbol B'(t) in L(y) with any element of the finite set o(t, B'(t)). Since PN
language is closed under finite substitution, it follows that ®(M) is a PN language.
Q.E.D.

Theorem 4.2 guarantees that PNTs can be used as the consistent models for the
dispatcher and the coordinators. Corresponding to the labelled PN in the standard form, we
introduce

Definition 4.2: a SPNT M=(N, I, A, G, i, F) is said to be in the standard form
iff the labelled PN v=(N, B, W, F) underlying M is in the standard form.

As in PN language, we can show that for any SPNT M, there exists a SPNT M'in
the standard form such that t(M"=t(M).

4.3 Synchronous Composition

To describe and specify the cooperation among the coordinators in the task

processing, we introduce the synchronous composition operator in this section. First, we

define inductvely the project of a string x on a language L by
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ATL=A,
undefined, if xTLeL'
(xa)TL= (xTpa, ifaeX
xTL, ifag T
where sTp denote the project of s on language L, T is the alphabet of L, and L' is the

closure of L, i.e., L'={xl there is a ye £* such that xye L}. The synchronous composition

is defined as

Definition 4.3: The synchronous composition of two PNTs
M1=(Ny, £y, Ay, 61, 11, F1) and Ma=(N2, 2, Az, G2, U2, Fp)
with
P1nPy=¢, T)"T2=9, and ;NI =¢ is a PNT M, denoted by
M=M,|IMz, M=, I, A, o, i, F) where

P=P;UP,, T=T;UT,, Z=Z,UZ,, A=A UA,,
LD, teT O1(1), te Ty
I(t)= O)= ‘
I(1), te T Ox(t), te T,
o1(t, a), if (La)e TixZ,
ot a)= ot a), if (ta)eTxZ,

undefined, otherwise,

Hi(p), peP;



n(p)=
Ha(p), peP;

and

F={me R(}t)l m=m,e F; for pe P; and m=mye F; for pe P2};

A move by M=M, IIM; can be represented as

(8(my,ty), ma, X, yz1), a€Zy
(m;, my, ax, y) =
(my, 8(ma2,2), X, yZ2), a€X,

where z;€ G1(t1, a) and z2€ G(t2, 2).

Synchronous composition for the case of Z;"Zy#¢ involves a complex definition
for the PN of the composition. But it is easy to describe the composition in this case in

terms of configurations by defining

(8(my,t1), 8(ma,t2), X, yZ122), or
(m1, my, ax, y) =
(5(m1,t1), 8(m2rt2)’ X, yzzzl)

when ae £1NZ,, where z;€ G1(t;, a) and zp€ Oo(t2, a).

By doing induction on the length of a string, we can prove the following important
result:
aM;iMz)=aMplla(M2)
where the operator " Il " on the right side of the equation is the concurrent operator of two

languages defined at the section 3.2.
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Note that a(M;lIMj)=a(M)lla(M,) is not true for the case Z;"Z,#¢. However,

we have
aM1IM2)={xixTeM1ye (M) and xTaM2ye €(M2)}
when Z;NZp%0 .

The synchronous composition can be extended to more than two PNTs by defining
MMl oo (M1 My = (MMl eoe 1M} DMy

4.4 The Coordination Structures (CSs)
Now the model for the Coordination Level of Intelligent Machines is defined as:

Definition 4.4: A coordination structure, CS, is defined to be a 7-tuple,

CS=(D, C, F, Rp, Sp, Rc, Sc) where

(i) D=(Ng, Z,, Ao, C4, I4, Fq) is a PNT, called the dispatcher, with
Ng=(Py, T, I, Op and A = AUX, T = T

(ii) C=(C,,C;,,...,Cq} is the set of coordinators, n21. Each coordinator is
a SPNT
R S S TR S T PN S S S |
Ci=(Nc’ Ec’ Ac’ c).c’ u’c’ Fc) with Nc=(Pc’ T::’ Ic’ Oc)
in the standard form except there is a transition t;e’I‘f: called the final

transition of C; with o(t,A)=A such that L(tp)=p; and Oi(t)=p!, p! and p}

are the szart and the final places of C; , respectively. It is also assumed that
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P\nPl=p, T'ATi=9, TnE=p, An&i=p, i, ij=l, ... n;

(iif) F=Ui_ {f‘, sp for so} is the set of connection points: f‘ is called the
input point of C, fisr the input semaphore of C, Q) the output point of C;,

and fiso the output semaphore of C;;

(iv) Rp and Sp are mapping from T4 to finite subsets of F, called the
disparcher receiving and sending mapping, respectively. Rp and Sp satisfy

the following connection constraints:

(a) (t, f;)e Spe(t, ffq)e Rp: which means that in order to send
information to coordinator C;, the dispatcher should check the input
semaphore f; first;

) (t, F;))e Rpe(t, t;o)e Sp: which means that after receiving

information from C;, the dispatcher should reset the output
semaphore fg,.

©) (t, f‘i)e Rp and (t, téo)e Rp: which means that the dispatcher
cannot receive information from coordinators through t‘ and f;-o,

@ , f‘o)e Sp and (t, f‘SI)e Sp: which means that the dispatcher
cannot send information from coordinators through t:) and £ P

(e) if (¢, t:))e Rp then t is not initially enabled and that in any firing

sequence which enables t, the number of the transitions t' with (t',
f')e Spis greater than the number of the transitions t' with (t,

f‘o)e Rp: which means that before for a transition to receive the
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execution result from a coordinator, there have to be other

transitions activate the coordinator by sufficient times. .
(F) for any f| and f,, there exists t, t'e Tq such that (t, f)e Sp and

(t, f‘;))e Rp: which means every coordinator is connected with the

dispatcher bidirectionally;
(v) Rc and Sc are mapping from Te=UL, Tk to finite subsets of F, called

the coordinator receiving and sending mapping, respectively. Re and Sc

satisfy the following connection constraints:

@a) (, ti))e Scedt, tgo)e Sp: which means that in order to send

information through the output point, transition t has to check
the output semaphore fg, first;

(b) (¢, f‘;))e Rc and (t, fisl)e Rc: which means that the
coordinators cannot receive information through Q) and fi:I?
(©) (t. f)eSc and (t, f.)eSc: which means that the

coordinators cannot send information throu gh f} and féo-

Figure 4.6 gives the configuration of the coordination smuctures, The input alphabet
Zo, E::, and the output A;, i=1, ..., n represent the set of the primitive events, primitive

control actions, and primitive operations defined at the Organization Level, Coordination

Level, and Execution Level respectively. Ay is the set of the internal operations in the
dispatcher. Each coordinator is associated with four connection points, called input point,
input semaphore, output point, and output semaphore, respectively. The notation of

connection point is similar to the concept of port in network theory, which has been used
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in the distributed sensor systems [I.Lee and Goldwasser 1985, Durrant-Whyte 1987] and
the manufacturing process [Heukeroth and Nour Eldin 1988]). Specifically, a token in the
input point of a coordinator indicates that a task has been issued to the coordinator, and the
token also contains the necessary instruction (ordered coordinator—oriented control actions)
and information for the task execution. The dispatcher can send a task execution command
to a coordinator only if there is a token in the input semaphore of the coordinator, that is, a
token in the input semaphore indicates the coordinator is available for the task execudon. A
token in the output point of a coordinator indicates that a task has been completed by that
coordinator, and feedback information of task execution is contained in that token. A
coordinator can send feedback of task execution to its output point only if there is a token in
the output semaphore of the coordinator, which implies that the communication facility is
ready for information transferring between the dispatcher and the coordinator. Once the
corresponding transition in the dispatcher takes the feedback information from the output
point, it will reset the output semaphore, by the connection constraints (or connection

protocol) imposed.
The behaviors of the dispatcher and the coordinators are specified by the transitdon
sequence sets L(Ng, itq) and L(NIC, p.’c), i=1, ..., n, respectively. As in program

verification, where the behavior (all possible routine sequences) of a program is used to

prove the correctness of.thc program and guide the implementation, the transition sequence
sets L(Ng, ig) and L(NG, #t) can be used for designing, analyzing, and implementing or

simulating the models for the dispatcher and the coordinators. Let us define

T, = (t1te Tqand (1, f)e Sp}, i=1, ..., n

then, in order for the coordinator C; to process the tasks from the dispatcher, the following

relationship has to be satisfied
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a(Cy2 (ot )T riys 1 te T and 2 Zo}, i=1, ..., n

that is, the coordinator C; should be capable of processing all the possible task strings
issued from the dispatcher. This relationship is guaranteed being able to be satisfied by the

closure property of PNL under the union operation and the theorem 4.2.

The connection among the dispatcher D and coordinators C;is the abstract
specification of the actual communication facilities among the dispatcher and coordinators.

It is clear that coordinators are not allowed to communicate with each other directly, since
Rc(TE)NSc(TE)=0, i#j by the connection constraints imposed in the definition of the

coordination structure. It should be noted that various complex connection patterns can be
defined by using different receiving and sending mappings. One of the most basic
connection patterns can specified as: (i) a coordinator can only access to its own input point
and output point, and input semaphore and output semaphore; (i1) only one of the initially
enabled transitions of a coordinator can receive information from its input points; (iii) only
the final transition of a coordinator can send information to its output point. A coordinator
structure with this type connection pattern is called a simple coordination structure. We will

concentrate on the simple coordination structure in this report.

To describe the operation of the coordination structure CS, we first define the Perri

net underlying the CS as N=(P,T,1,0), where

P=P4U F U Pc, T=Tqu Tc, Pe= UL, P, Te= UL Tk

Ia(t) v (fi(t,H)eRp}, te Ty,

W= |
I.(H v ((tHeRc), e T,

36



Oq4(t) v {fi(t,H)eSp], te Ty,

O(t)= . .
O;(n U {fi(t,He Sc}, te T,

The initial marking of N is defined to be

M4(p) or ui(p), if pePq4 or pe Pi,

H(p)= 1 if p=f§; or £y,

0 otherwise

To start operation, the CS first receive a string in the task command language L.,
Le., a sequence of primitive events, from the Organization Level and puts it on the input

tape of the dispatcher D. The dispatcher D then begins the process of translating (or
dispatching). Once a transition t of D with fl ! f‘I as its output places in F is fired with

respect to the current marking of the underlying PN N to execute the primidve event a, it

will send the selected control action string ze G4(t,a) to each of input tapes of the
coordinators Cil’ s C ;.» and cause them to operate synchronously, that is, activate the
S

synchronous composition Ci1" s llCis to operate. Upon the completion of a subtask by a
coordinator Cik, if the final transition ték is enabled with respect to the current marking of
N at the dme, it will fire by removing the token from pfik and fls% and displacing a token to

pik and fg‘. C i becomes idle again and the execution result (feedback) is sent to the

output point, which will be taken by the dispatcher to continue the process. Otherwise, if

tfk is not enabled, C; has to wait until the output point fg‘ (i.e., the communication facility

for C ik) is available, since by the definition of the standard form SPNT, no other

transitions in C, can be enabled before t* removes the token from p{*. Once the
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configuration of D reaches (my, A, ), mge Fq, and the configurations of the coordinators
are either (p;, A, y;) (which means the coordinator does not perform task for a while) or

(mi, A, yi). mice Fi, the entire task process is completed successfully, and the requested

job is accomplished.

A string seA;) is said to be executable by the CS if (iL4, S, A)=*(m, A, y), me Fq
and the final configuration of each of coordinators is either (p.i, A, yi) or (mic, A, yic),

mie Fic. It should be pointed out that not every string in a(D) is executable by the CS,

because the additional connection restrictions imposed by the receiving and sending
mappings. However, we can prove that a transition enabled in Ny after finite step firing can
also be enabled in N after the same steps of firing (generally by a different path, however,
see the proof of theorem 4.4). In any case, it has to be guaranteed that every string in L, (a

subset of c(D))should be executable by CS during its design phase.

The A-move (the firings of transitions caused by o(t,A)) have the special physical
significance. They may represent the internal operations occurred in the dispatcher or
coordinators which are activated to provide the necessary information or resource for the

continuity of the coordination process.

Clearly, the underlying PN N specifies the precedence relation among the activites
in the dispatcher and coordinators and therefore defines the information structure of the CS.
From the point of view of abstract execution of PN N, the string issued by the Organization
Level can be considered as a path specification in the PN Ny, and, in turn, the string
selected by the dispatcher D can be thought as the path specification in the PNs of the
corresponding coordinators. This fact reveals once more the nested structure aspect of the

Coordination Level modeled.
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4.5 Some Structure Properties of the Coordination Structure

One of the merits offered by the above Coordination Level model is that the
underlying PN N enables us to use the PN concepts and analysis methods to study the
structure properties of the Coordination Level, such as liveness, boundedness,
reversibility, consistency, repetitiveness, etc. The following two theorems present the
results about the boundedness and liveness of the Coordination Level.

Theorem 4.3: The PN N underlying CS is bounded (safe) if all the PNs Ny, Ni,

i=1, .., n are bounded (safe).

The proof is very simple. By the definition of receiving and sending mappings, for
any me R(N,t), m(p)<1 if peF. Clearly, the PNs Ny, N;, i=l, ..,, n are closed subnets

of PN N, it follows immediately that the restriction of R(N,jt) on Py is a subset of R(Ngy,
Hd) and the restriction of R(N,u) on P, is a subset of R(N., pul). Therefore, the

i .

boundedness of Ng, N, i=1, .., n guarantees the boundedness of the underlying PN N.

The claim is also true for safeness.

The boundedness of the underlying PN guarantees the structure stability of the CS.
It can be shown, however, that for a PNT M with a bounded PN, we can define an
equivalent finite transducer M’ using the reachability set of the bounded PN such that
M )=t(M). This implies that the inpur and ourpur languages of the bounded PNT are
actually the regular languages, which indicates that the language complexity of PNTs with
bounded PN is very simple. Therefore, for some cases, the unbounded PNTs are required

in the coordination structures.
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Theorem 4.4: The PN N underlying CS is live if all the PNs Ng, Ni, i=1, .., n

are live.

Proof: Considering that for every coordinator C; there exists at least one transition
in Nq which takes f; as its output place in F, and that only the initially enabled transitions in

Ni take t; as their input place by the definition of the simple connection pattern, we only

need to show that Ny as a subnet of the underlying PN N is live in order to prove N is live.
Let me R(N,t) be an arbitrary marking, R(N,m,k) be the set of markings reached
from m by firing at most k transitions in Ty, mq and R(N,mg,k) be the restrictions of m and
R(N,m.k) on P4, and R(Ng,mgq,k) be the set of markings reached from mgy by firing at most
k transitions when Ny is considered as an independent PN. Let T(k) and T'(k) be the sets
of transitions in T4 which are enabled under R(N,m,k) and R(N4,mg,k) respectively. We

claim that

R(N,mq,k)=R(Ng,mgq.k), T(k)=T'(k)

When k=0, R(N,mg,k)=mg=R(Ng,m4,k), and, obviously, T'(k)2T(k). Let te T'(0)
be an enabled transition. If (t, f;))e Rp for all i, then it is clear that t is also enabled by m, so

te T(0). If (¢, F'O)e Rp for some i, then by the connection constraint (e) of (iv) in the

definition 4.4, that in any firing sequence which enables t, the number of the transitions

which activate C;is greater than the number of the transitions which take the execudon
result from C;, there should be tokens in f}, in the marking m, so t may fire under m.

Therefore, te T(0), hence T()2T(0), T(0)=T"(0).

Assuming that R(N,mgq,k)=R(Ng,mgy,k), T'(k)=T(k), for k<q. R(N,mg,q+1) =
R(Ny,mg,q+1) follows immediately from T'(q)=T(q). Since T'(q+1)2T(q+1), by the same
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argument used in the proof of T(0)=T'(0), we can show that T(q+1)2T'(q+1), therefore
T(q+1)=T'(q+1).

Since Ny is live, every transition is possible to fire from my in Ng. From R(N,m4,k)

=R(Ng4,mq,k), T'(k)=T(k) for any k, we see that the same transition is also possible to fire

from m through the same number of firings of transitions. Therefore, Nis live. ~ Q.E.D.

Even a transition in T4 can be enabled through the same number of firings of
transitions of T4 in both PN N ans N4 from the same making. However, the firing
sequences in N and Ny may be different. Especially, two transitions in T4 are parallel in Ny

may no longer be parallel in N, since they may require inputs from the same coordinators.

For the construction of coordination structures, the methods of building the
bounded and live Petri net models for manufacturing systems will be very useful. The step-
wise refinement approach developed by Valette (1979), Suzuki and Murata (1980, 82-83),
Zhou, DiCesare, and Desrochers (1988), as well as the hierarchical reduction analysis
methods by Hyung et al (1985, 87) and Soog et al (1988) can be easily adapted for

constructing the bounded and live Petri net models for the dispatcher and the coordinators.
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5. Decision Making in Coordination Structure

We now investigate the problem of task scheduling and translation in the
coordination structures. Section 5.1 describes a simple scheduling procedure based on the
execution rule of Petri nets, and Section 5.2 presents a probabilistic method with leamning

for the task translation.

5.1 Task Scheduling

Task scheduling in the Coordinadon Level is the process of identifying the
appropriate subtasks to be executed to complete the task issued by Organization Level. In
CS model of Coordination Level, since the dispatcher and coordinators process their tasks
simultaneously, the problem of task scheduling has to be dealed with distributedly. The
task control for a special class of processes using the standard execution rule of Petri net
has been studied by Komoda et al (1984), Murata et al (1986), and Crockett and
Desrochers (1987). In the sequel we present a uniform scheduling procedure for the

dispatcher and coordinators based on the execution rule of Petri net.

Let M=(N, Z, A, o, i, F) be a PNT representing the dispatcher or a coordinator.

For any ae Z, we define

T(a)=(t| o(t, a) is defined}, Ta=T(A)={t ! o(t, A) is defined}.
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Two queues, Qr and Qp, are used to in the scheduling procedure to record the task
processing. Qr stores the unexecuted subtasks, and Qp the subtasks which are delayed to
be executed due to that the transitions processing them are not be enabled at the appropriate
time. Let First(Q) be a function which returns the first element of Q and deletes this element
from Q meanwhile, Insert(Q, a) be the function which inserts a to Q at the end of Q,
Union(Q;, Q2) unifies Q; and Q; by placing the content of Q; at the end of Q;, and
Null(Q) empdes Q.

Let v=a,a,...a;€ A* be the task string to executed, the scheduling procedure for M

can be described as:

Scheduling Procedure:

1. Qr:=(ay, 2y, ..., a5}, Qp:=0 ;

2. IF Qr is empty THEN STOP;

3. w:=First(Qy);

4. IF there exists a te T(u) and t is enabled THEN firing t, GOTO 7;

5. IF there exists a A-move firing sequence ee T)* such that a te T() is
enabled by firing e THEN firing et, GOTO 7;

6. Insert(Qp, u), IF Qr is empty THEN Qr:=Qp and Null(Qp), GOTO 2;

7. IF Qpis not empty THEN Qr:=Union(Qr, Qp) and Null(Qp), GOTO 2.
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In the above scheduling procedure, each subtask is examined in the order which
appears in the task string v. If the subtask is executable (i.e., an appropriate transition is
enabled) at the time, it will be executed. Otherwise an effort is made to find a sequence of
internal operations which will lead the subtask to be executable. If the effort fails again, it
will be removed from the task queue Qr to the delayed queue Qp. Once there is a change in
the state of PNT M, all the delayed subtasks in Qp will be moved back to Qr in their
original order and be examined again, since it is desired to keep the subtask order as
specified as much as possible. The scheduling procedure will terminate in a finite amount

of ime since it assumed that the task strings issued are compatible and complete.

There are various methods can be employed to find the A-move sequence required
by the fifth step in the scheduling procedure. For a large and complex PNT, the heuristic
search algorithm discussed in [Passino and Antsaklis 1988a and b] may be used. For a
bounded, average size PNT, however, the simple breadth-first search along the reachability
trec of the PNT obtained by firing the only the A-move transitions under the current

marking can serve the purpose quite well.

The time factor is not explicitly considered in task scheduling. Some difficulties and
optimization problems, like srarvation and load balancing, may be raised when the time
factor is included. In that case, methods developed for scheduling in Operation Research
may be required [Shen 1988].
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When applying the scheduling procedure to the dispatcher or coordinator, it should
be remembered that the enabled condition of a transition is with respect to the underlying
Petri net N as defined in 4.4, not to its own Petri net. In other word, the condition of the

connection points have to be considered.

5.2 Task Translation

Once a subtask is located to be executed by an enabled transition during the task
scheduling, the firing of the transition is actually the process of decomposing the subtask
into an ordered control actions and then, after assigned with rea-time data (task
formulation), executing these control actions (for the internal operation) or sending them to

the corresponding unit in the next level. This phase of task execution is the task translation.

Task translation is in general very large and difficult problem in the coordination of
Intelligent Machines. For a given transition, the associated task translation could be one of
the major issues in the corresponding research area (e.g., pattern recognition in the vision
and sensor coordinators, path planning and control al gorithm in the moton coordinator, for
an intelligent robotic system). The translation problem can be solved in either an active
fashion or a passive fashion. In the active approaches, the translation of a subtask is
formulated on-line based on a set of rules and a data base which describes the related
environment and system status information. The structural formulation of plan generation
suggested in [Wang and Saridis 1988b] can be used in this case. In the passive approaches,

a fixed number of translations for a subtask are pre-specified and the translating is to
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choose one of them according to the current situations for the subtask. The probabilistic
methods are probably the most appropriate way to implement the passive task translation.
Note that one of the major difference between the active and passive task translation is on
the knowledge representation, the knowledge in the active task translation should be
represented declaratively, and on other hand, the knowledge in the passive task translation
should be represented procedurally. For a PNT, the active or passive translation is

indicated by the way how the translation mapping o is generated.

In order to avoid the discussion of task translation in too much detail, we will
concentrated at the passive task translation in the following investigation. Assuming a fixed
number of translations are available for each translation, we use the probabilistic method
with learning ability developed by Saridis and Graham (1984) to choose the best translation

for a subtask in a particular situation.

Let t be a transition of a PNT M=(N, I, A, o, K, F) representing the dispatcher or

a coordinator . The number of translations designed for tis

Mt=z lo(t, a)l, o(t, a) is defined for aeZU(A).
a

Let x, represent the state and feedback information contained in the input places of t

(X can be interpreted in terms of colors of tokens) and ue U=(ae ZU{A}lo(t, a) is

defined} represent the subtask to be translated by t. A situarion is defined to be a
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combination of xand u,, i.e., (u, xo). The number of situation distinguished by t is

designated as N..

Now consider a matrix of subjective probabilities, (pitj)M,th, such that p;j is the

subjective probability of choosing the translation s; when the situation (u, x); is observed.

The subjective probabilities satisfy the constraint,

M,
t .
Z P; =1, forall j=1, .., N.

1=1

The decision rule of the probabilistic method for choosing a translation is

Decision Rule: When situation (u,, Xy)j is observed, choose a
translation s; using a random strategy with the subjective probability

pij i=1, .. M

A random perform index or cost function is associated with each translation. After

the execution of the control action specified by s; for situation (uy, xp)j, compute the

performance index Jjj;, and update the performance estimate using the following algorithm,
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Performance Estimate Update Algorithm (PEUA):

Tt =T (0 + By D (D) - T (0]

where

J s Observed performance value,

J  performance estimate, and

n, number of times the event ((ut,xt)jsi) has occurred.

After updating the performance estimate, update the subjective probabilities for i=1,
..., M and the given j by the following algorithm,

Subjective Probability Update Algorithm (SPUA):

P (k+1)=p;,(k) + Y+ 1)(E (k) -p, )]
where - -
1,ifJ .=minJ ..

1 1 1j

gl.l(k)=

0, otherwise.

Two theorems are now stated describing the convergence properties of these
algorithms.

Theorem 5.1: If the B(n;;) of PEUA satisfies Dvoretsky's convergence



conditions
i mBk) =0,
ko =
Z ﬁ(k) = oo,
k=1

D, By <o

k=1

then
Pr(lim [J .(k) - J .]=0}=1
k>0 y 1)

where J i is the expected value of J i

Theorem 52: If the B(n;;) of PEUA satisfies Dvoretsky's convergence
conditions in Theorem 5.1, and the (k) of SPUA satisfies

Dvoretsky's convergence conditions

li my(k) =0,
k> oo

Y, M ==,
k=1

3w <
k=1

49



thcnforalliandalljsuchthatjijminj

1 U

P lim py() =1]=1
k—e Y
and for all otheri and j

Pr{lim p.(k)=0] =1 .
k—ee Y

This theorem establishes the convergence of the learning algorithm under very
general plant conditions. The proofs for the two theorems were given in [Saridis and

Graham 1984].

Assuming that the initial performance estimates for a transition t are available, we
can find the most conservative initial subjective probabilities by J aynes' Maximum Entropy
Principle [Jaynes 1968] as

-aJ
0 ¢

Py = Zj(a) ’

]

the partition function Z;(cx) is defined to be
M -

Z@= ¢ ¢

i=1

and the parameter o satisfies the constraint
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Mo o

275"

bod i _ <0
llije =Z(®)J; ,
1=

where pg are the initial subjective probabilities, and fij are the initial performance estimates,

and Jj is the initial average performance estimate at the jth situation. When

M‘~o

-0 .
] =
) Mt
we have
0
0 _ Jij
pij_ ’

M=

143
H
—

i=1, ..., My, j=1,....N;.

The learning process can be measured by the entropies associated with the
subjective probabilities. For a PNT M, its translation uncertainty is defined to be the total

entropy of subjective probabilities assigned to the transitions of M, that is

HM) = ) HQ®
teT

and
H®) = H(u, x) + H(t fu, x)

where



N,

t

Nl
H(u,x) = z p((ul,xt)j)lnp((ul,x‘)j)=-z pzlnpj
j=1

=1

where p; is the objectve probability of (ut,xl)j ocurring.

N, M,
H(tfux) = - ) (%)) . BCs, fa,x))InpCs, /(u,x)
j=1 i=1

NM,
t t t
=-25 Z Pylnp;;
j=1 1=1

Define

HE)= ) H,x),  HI/E)= Y H(t/s,x)
teT

teT
then
HM) = H(E) + H(T/E)

This expression of H(M) indicates that the transladon uncertainty can be divided into two
parts: the environment uncertainty H(E), caused by the uncertainty of the environment
(include the uncertainty in task assignment); the pure translation uncertainty H(T/E), the
uncertainty in translation given the environment . Clearly, the learning ability of the PNT M
cannot reduce the environment uncertainty H(E), but the pure translation uncertainty
H(T/E) can be reduced. Note that H(E) specify the lowest bound of the total translation

uncertainty, which can be achieved through the learning since the learning convergence
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theorem 4.2 guarantees that the pure translation uncertainty can be reduced to zero by

learning process.

The average execution cost estimate of the PNT M is

fon=) 7o

teT

where

N M
] (t)=ZP§zP§,5 ij

j=1 =l

For the whole coordination structure, we have

H(CS) = H(E ) + H(T,y)

where

N
H(Eqg)=H(Ep) + HE)
i=1

N
H(T)=H(Tp) + Z H(T)
i=1

The decision making mechanism of the whole coordination structure bears the
characteristics of the embedded decision schema defined in [Saridis and Graham 1984].

The learning process of the whole coordination structure also has the similar structure as



that of the hierarchical learning automata [Mandyam et al 1981, Baba 1987). For the case of
the small number of situations, the learning by recording the conditional probabilities under
specific situations will not cause the serious problem in memory space and learning speed.
As the number of situations and the task to be processed increasing, however, the problem
of memory space and learning speed becomes more and more serious. For the case of the
larger number of situations, the pattern-recognizing learning algorithm developed in [Barto
and Anandan 1985], which avoids the maintenance of separate selection probabilities for
each situation by parameterizing the conditional probabilities and constructing a mapping

from the situations to the parameter, should be used.

A note is in order concerning the case when the pure translation uncertainty of a
PNT is reduced to zero. In this case, the optimal translation is founded for all transitions in
the PNT. However, this does not necessarily imply that a global optimal translation is
achieved for the PNT in general, simply because that the optimal translations of a transition
might cause the worse situations for the subsequent transitions, thus increase the total task
execution cost. To achieve the global optimal translation, it is imperative to specify the
influences of the translation of a transition to others, and use a learning algorithm based the
global information. However, an analytical expression for such influences may be too
complex to be established for transitions with quite different functions. If some appropriate
forms for such influences are obtained, a team-theoretic formulation for the global optimal

translation might be developed.
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A PNT with the smaller pure translation uncertainty indicates the PNT is more
knowledgeable in task execution. Since learning from the execution can reduce the pure
translation uncertainty, learning can make a PNT more knowledgeable about task
execution. This observation reveals that the decision-makings in the Organization Level
and Coordination Level bear "dual" character: on one side, the decisions made in
Organization Level have to make the dispatcher to accomplish the requested task with some
optimization criterion, on the other side, these decisions should also make the dispatcher
more knowledgeable about the task execution in the future by reducing its pure translation
uncertainty. Similarly, the decisions made in the dispatcher have to make the coordinators
to accomplish the requested task with some optimization criterion, on the other side, these
decisions should also make the coordinators more knowledgeable about the task execution
in the future by reducing their pure translation uncertainty. To reduce the cost, only the
subtasks with the minimum costs should be selected; To reduce the uncertainty, the
subtasks with the large entropy should be tried. The trade-off of the two sides shouid be

judged by some criterion.
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6. A Case Study

In this chapter we present a case study for an Intelligent Manipulator System by
building a simple coordination structure for the Coordination Level consisting of a
dispatcher, a vision coordinator, a sensor coordinator, and a motion coordinator, and
simulating the task process on the model. The investigation here serves only for the
illustrative purpose and the model constructed does not exhibit fully the real expression
power of coordination structure, since both the dispatcher and the coordinators are
oversimplified and concurrency is not involved. The first section of the chapter gives the
PNT models for the dispatcher and the coordinators, and the overall structure of the
Coordination Level. The second section shows the simulation results of the task processes

for the corresponding PNT models and the whole coordination structure.

6.1 The Petri Net Transducers and the Coordination Structure

This section describes the individual PNTs for the dispatcher and coordinators at
first, and then integrates the PNTs by specifying the corresponding receiving and sending
facilities to form the final simple coordination structure for the Coordination Level. We start
from the dispatcher.

6.1.1 The Petri Net Transducer for the Dispatcher

A, Petri net Model: The Petri net model for the dispatcher, given in Figure 6.1,
consists of 8 places and 10 transitions. A transition generally represents an algorithm for
some specific task and a place generally represents some specific process. For the

dispatcher, these places and transitions are specified as follows:
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Fig. 6.1 The Petri Net for The Dispatcher



Places:
py: initialization process;
P2: grOss environment sensing process;
P3: arm motion process;
P4: arm motion verification: check whether or not the desired location of
upper arm is achieved;
ps: fine environment sensing process;
Ps: hand motion process process;
P7: hand motion verification: check whether or not the specified object is
grasped or putted down on the desired location ;
ps: task verification: check whether or not the specified task is
completed.

Transitions:
tj: issuing commands for the gross environment sensing;
t2: receiving the gross environment sensing information from the
coordinators and issuing commands for upper arm motion;
t3: receiving and verifying the motion execution result from the
coordinators;
t4: returning to the initial place p; because the failure of : the motion process;
ts: issuing commands for the fine environment sensing;
ts: receiving the the fine environment information from the coordinators and
issuing commands for hand motion:
t7: receiving and verifying the hand motion execution result from the
coordinators;
tg: returning to the arm motion verification place P4 because the failure of
the fine moton process;

t9: startung the task verification;
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t10: continuing the task process.

B. Task Translation: The input alphabet, i.e., the set of the primitive events from the
Organization Level, is assumed to be Zo=(e1, €2, €3, €4, €5}, where

e1=Dump, e,=Grasp, e3=Fill, e4=Move, es=Camera
are defined based on the example given in [Valavanis 1986].

The output alphabet, i.e., the set of the coordinator-oriented control actions for the
coordinators is Ag= Zc= AjUZ, UL UL, where Ay is the set of the internal operations of
the dispatcher, and Z,, I, I, are the input alphabets for the vision coordinator, the sensor
coordinator, and the motion coordinator, respectively. We assume that

Ar={iy, iy, i3, i4, is, ig),
Zv=(v1, va}, Zs=(s1, 52}, Zy={my, my, hy, hy}
where
iy=the procedure for verifying the arm motion execudon,
i=the procedure for preparation of re-executing the arm motion,
iz=the procedure for verifying the hand motion execution,
l4=the procedure for preparation of re-executing the hand motion,
is=the procedure for organizing the feedback for the Organization Level,
i¢=the procedure for continuing the task execution;
and the vj's, sj's, as well as m;' and hi's are instructions to the vision, the sensor, and the
motion coordinators, respectively, and will be defined in the descriptions for the

corresponding coordinators.

The translation mapping oy for the dispatcher is specified as
Cults, €1)=0u(ts, €2)=0q(ts, €3)=hys1, hys2, hosy, hys, hy, hy},
Ca(t2, €4)=0q(t2, A)={mv1, myvy, mavy, mve, my, my},

Ga(ty, es)=04(t1, A)={vy, v2},



Cd(tSt CS)=Gd(t51 }')=[vlsl‘l V281, V182, V282, 81, 82)9
O4(t3, M=(i1}, 04te, A)=(ia}, Ou(ts, R)=(is),
cd.(t89 A')={i4>}9 Gd(t9, }")={i5]’ Gd(tIO’ )\')={i6]'

C. Operation procedyre: Once receiving a task plan from the Organization Level, the

dispatcher will issue one of the two control strings vy and vy, according to the information
coded in the tokens of the initial place p, and the task plan, to the vision coordinator by
firing transition t;. Upon the completion of the vision process, there will be a token in
output point of the vision coordinator, which contains the gross information about the
environment. Now the transition t, is enabled, and the motion coordinator is activated
through the firing of transition t; to move the upper arm to the designed position.
Transition t; selects the control command among {m;vj, m;va, myvy, myvy, mj, my}
based on the information contained in its input tokens. The first four control strings of t,
need the vision information for the execution verification, and the last two only use the
feedback from the motion coordinator. When the arm motion process is completed,
according to the result of the execution verification carried out by ts, either the fine sensing
transition ts is fired, if the arm motion is successful, or transition t4 is fired to re-execute
the arm moving task, if the arm motion is fail (by a certain criterion). Transition ts can pick
up one of the control commands among {vi5sy, V251, V182, VaS2, S1, s2}. The first four
control strings of ts involved the cooperation between the vision coordinator and the sensor
coordinator, however, the last two only use the sensor coordinator. After the completion of
the fine sensing process, transition ts can be fired to invoke the motion coordinator for
hand moton, e.g., to grasp or put down, to open or close some thing. Like tp, transition g
also has six alternatives,{h;s,, h;s,, hasy, hasy, hy, hy}, for its task execution, with the
first four need the sensor information for the execution verification, and the last two only
use the feedback from the motion coordinator. The resuit of the hand modon verification,

processed by transition ty, will enable the next two transitions, tg and tg. The successful
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process leads to the firing of tg, otherwise, of tg, which may further lead to the firing of t4
if the desired hand manipulation can not be achieved by the current upper arm location.
Finally, the task verification transition tg will decide whether or not the whole task plan is
completed. If the task plan is achieved, the dispatching process will be ended up by
forming the execution feedback required the Organization Level, otherwise, transition tyq

will be fired to continue to the execution process for the remained subtasks.
6.1.2 The Petri Net Transducer for the Vision Coordinator

A. Petri net Model: The Petri net model for the vision coordinator, given in Figure 6.2,
consists of 5 places and 9 transitions. As for the dispatcher, a transition generally . .
represents an algorithm for some specific task and a place generally represents some

specific process. For the vision coordinator, these places and transitions are specified as

follows:

Places:
Ps: the start place;
p1: inidalizatdon process;
p2: feature extraction and identification process;
P3: image fusion process;
pe: the final place.

Transitions:

ts: initializing the vision system;

tj: calibrating;

t3: taking picture and performing feature extraction and identification;

t3: returning to the initial place p, because the failure of feature extraction

and identification;
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Fig 6.2. The Petri Net for the Vision Coordinator



t4: performing the image fusion to obtain the required information, like
location and orientation;

ts: returning to the initial place p; because the failure of the image fusion;

ts: finishing the vision process;

t7: acknowledging the failure of the vision process;

t;: reporting the visual information and resetting the vision input semaphore

and the start place.

B. Task Translation: The input alphabet is assumed to be X,={v;, v2}, where
vi=the minimum-error vision procedure,

vo=the minimum-time vision procedure.

The output alphabet A, of the vision coordinator consists of the internal procedures
and the hardware-oriented operations for the devices associated with it. Since we are not
going to involve with the Execution Level, we will not specified A, here, but point out that
only transitions t; and t, pass operation instructions to the camera controllers and all other
transitions just deal with internal information processing, e.g., feature extraction, pattern
recognition, and image fusion. By the same reason, the translation mapping Gy for the
vision coordinator will not be fully specified. However, in order to perform the
simulation, for transitions t, and t4 , we assume that

Ov(t2, M)=(vg1, vga}),
Ov(te, A)=(fy, f2},
where
v =the operation instructions for the camera controllers,
gi1=the fast algorithm for feature extraction and pattern identification,
g2=the accurate algorithm for feature extraction and pattern idendfication

’

fy=the fast algorithm for image fusion,
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fo=the accurate algorithm for image fusion.

C. Operation procedure: Once receiving z; task from the dispatcher (when a token is
displaced in its input point, specifying the task is either v; or v,), the vision coordinator
starts the process by firing t,. Depending on the information coded in the token of the initial
place p; and the current system status, the coordinator starts either transition tj or ty, ie.,
either to set up camera angle, focus, lens, etc., and to calibrate the cameras first, and then
take picture, or to take picture without calibrating. Transition t, can select one of the two
operations vg; and vg, according to the information coded in its input token and the task
issued. If the relevant features and patterns are extracted and identified in the picture
obtained, then transition t4 is fired to perform the image fusion process using the
information collected by t,, otherwise, t; is fired to back to p1 to take new picture.
Transition t4 also has two alternatives for image fusing, f; and f;. Upon the completion of
fusion process, either transition tg or transition ts will be fired. A successful fusion
process, i.e., the required visual information is obtained, results in the end of the vision
process (the firing of tg), otherwise leads to the firing of t5, which may further lead to the
firing of t7 if it is decided that the desired information can not be obtained by the vision
system from the environment. Once a token reaches the final place py, the final transition t;
will be fired to report the result to the dispatcher and to reset the input semaphore and the

start place, indicating that the vision coordinator is available for task again.
6.1.3 The Petri Net Transducer for the Sensor Coordinator

A, Petri net Model: The Petri net model for the sensor coordinator has the same
structure as that of the PNT for the vision coordinator, as shown in Figure 6.3, but with
different ransition and place function. Places and transitions for the sensor coordinator are

specified as follows:
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Places:
Ps: the start place;
P1: initialization process;
p2: feature extraction and identification process;
p3: feature fusion process;
pr: the final place.
Transitions:
t;: initializing the sensor system;
t): calibrating;
t2: taking data and performing feature extraction and identification;
t3: returning to the initial place p; because the failure of feature extraction
and idendfication;
t4: performing the feature fusion to obtain the required information, like
location and orientation;
ts: returning to the initial place p; because the failure of the image fusion;
ts: finishing the sensor process;
t7: acknowledging the failure of the sensor process;

tg: reporting the results and resetting the sensor input semaphore.

B. Task Translation: The input alphabet is assumed to be Zs=(sy, s}, where

s1=the minimum-error sensor procedure,

s?=the minimum-time sensor procedure.

The output alphabet A, of the sensor coordinator, as for the vision coordinator, will

not be specified here. Similar to the vision coordinator, only transitions t, and ty pass



operation instructions to the sensor controllers and all other transitions just deal with
internal information processing. Again, for transitions t; and ty , we assume that

Os(t2, A)={sd, sdp},

Os(t4, M)={cy, 2},

where

s =the operation instructions for the sensor controllers,

dy=the fast algorithm for feature extraction and pattern identification,

da=the accurate algorithm for feature extraction and pattern identification,

ci=the fast algorithm for feature fusion,

ca=the accurate algorithm for feature fusion.

C, Operation procedure: Once receiving a task from the dispatcher (when a token is
displaced in its input point, specifying the task is either s; or s;), the sensor coordinator
starts the process by firing t,. Depending on the information coded in the token of the initial
place p; and the current system status, the coordinator starts either transition t; or t,, ie.,
either to set up sensor parameter and to calibrate the sensors first, and then take data, or to
take data without calibrating. Transition t2 can select one of the two operations sd; and sdy
according to the information coded in its input token and the task issued. If the relevant
features and patterns are extracted and identified in the data obtained, then transition t4 is
fired to perform the feature fusion process using the information collected by t, otherwise,
t3 is fired to back to p, to take new data. Transition t4 also has two alternatives for feature
fusing, c; and c;. Upon the completion of fusion process, either transition tg or transition
ts will be fired. A successful fusion process, i.e., the required information is obtained,
results in the end of the sensor process (the firing of tg), otherwise leads to the firing of ts,
which may further lead to the firing of t; if it is decided that the desired information can not
be obtained by the sensor system from the environment. Once a token reaches the final

place py, the final transition t¢ will be fired to report the result to the dispatcher and to reset
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the input semaphore and the start place, indicating that the sensor coordinator is available

for task again.

6.1.4 The Petri Net Transducer for the Motion Coordinator

A, Petri net Model: The Petri net model for the motion coordinator, given in Figure
6.4, consists of 7 places and 12 transitions. These places and transitions are specified as

follows:

Places:
ps: the start place;
p1: inidalization process;
p2: path planning process;
P3: arm moving process;
Ps: hand approaching process;
Ps: grasping approaching process;
ps: the final place.
Transitions:
t;: initializing the motion system;
t;: calibrating;
t2: planning path for arm;
t3: issuing arm motion instructions;
t4: returning to the inital pla;e p1 because the desired location is not
reached;
ts: finishing the arm motion;
ts: determining the path for hand to approach the desired object (fine path

planning), and issuing hand approach instructions;
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t7: issuing grasping instructions;

tg: returning to the initial place p; because the specified object is not seized
or not putted to the desired location;

to: finishing grasping process;

t10: acknowledging the failure of motion process;

t: reporting execution results and resetting the motion input semaphore and

the start place.

B. Task Transiation: The input alphabet is assumed to be Zm={m,, my, hy, hy},
where

m;=the minimum-error motion procedure,

m;=the minimum-time motion procedure,

h;=the minimum-error grasp procedure,

hy=the minimum-time grasp procedure.

As for the vision coordinator and the sensor coordinator, the output alphabet A, of
the motion coordinator is not specified here. The transitions which pass operation
instructions to the arm or hand controllers are ty, t3, tg, and t;. All other transitions deal
with internal information processing like path planing and execution verification. The
translation mapping o, for transitions t3 and t7 are assumed to be

Om(t3, A)=(11, I},
Om(t7, A)=(ki, kp},

where
v =the operation instructions for the camera controllers,
ly=the fast arm control algorithm for arm controllers,
ly=the accurate arm control algorithm for arm controllers,

kj=the fast hand control algorithm for hand controllers,
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ka=the accurate hand control algorithm for hand controllers,

C. Operation procedure: Once receiving a task from the dispatcher (when a token is

displaced in its input point, specifying the task is which of {m,;, my, hy, hy}), the motion
coordinator starts the process by firing t,. Depending on the information coded in the token
of the inital place p, and the current system status, the coordinator starts either transition t,
or one 5f t2 and tg, i.e., either to calibrate the arm or hand first, and then to execute arm or
hand motions, or to execute arm or hand motions without calibrating. If the task is to move
the upper arm (i.e., one of m; and m, is received), transition t; will be fired, otherwise the
task is to move the hand (i.e., one of h; and h; is received) and tg will be fired. Both
transitions t3 and t; have two alternatives to control the arm (1, and ) or the hand (k; and
k7). The successful execution of the arm motion (by t3) or hand grasp (by t7) will lead to
the firing of transitions ts or t, indicating the end of the successful motion process,
otherwise transitions t4 or tg will be fired, which may further result in the firing of t;,,
acknowledging the failure of the motion process. In any case, once a token reaches the final
place p, the final transition t; will be fired to report the execution result to the dispatcher
and to reset the input semaphore and the start place, indicating that the motion coordinator

is available for task again.

6.1.5 The Simple Coordination Structure for the Coordination Level

The (simple) coordination structure for the Coordination Level now can be
constructed from the individual PNTs for the dispatcher and coordinators by introducing
the connection points and the receiving and sending functions. The pattern of the
connection points in a coordination structure is pre-fixed, i.e., each coordinator is
associated with four connection points, the input point, the input semaphore, the output

point, and the output semaphore.
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The dispatcher receiving and sending functions are specified as

Ro=((ts, f5p) (12, £5p), (2, £0), @5, (13, £5), (13, £, (15, £27), (2, £5,),
(t6, f5p)s (16 fo), (t6, £ (ta,fSp), (17, ), (17, £2)

Sp={(t1, ), (t2, 7). (t2, f30), (t2.£7), (13, f50)s (13, 500, (15, f), (ts. f5),
(ts, ), (t6, f50), (t6, f50). (16,5, (27, fso (17, f5o)}

The coordinator receiving and sending functions for a simple coordination structure
are fixed. In our case, it follows that for each coordinator
{(ts, fD, (t, fso)}eRc, {(ts, fsD, (t, fo)}e Sc
as shown by the dash arcs in the Figures 6.2-4.

Figure 6.5 gives the overall structure of the coordination structure (the arrows for
the receiving and sending links are omitted). It should be pointed out that the PNs of the
dispatcher and coordinators are bounded and live, therefore the coordination structure is

also bounded and live by the theorems 4.3 and 4.4.

6.2 Simulation of the Task Processes in the Coordination Structure

Now we describe the results of the task processing simulation on the coordination

structure constructed above.

A, Assumptions: From the section 5.2, to simulate the task processing, we have to (i)
specify the situations for each transition in the dispatcher and the coordinators, (ii) assume

the cost functions (performance indices) for each task translation of a transition.
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The situations can be specified in terms of the information encoded in the tokens of
a Petri net (or colors of tokens, as called in the colored Petri nets). For the dispatcher, we
assume that the tokens in the places can be classified into one of the two types: the normal
token and the special token. The meaning of "normal” and "special” can vary from place to
place. Besides the normal and the special types, the tokens in the places of p, and p7 may
take another type: the back token, and the tokens in the places of pg may be a finish type.
This can be written as

P1=P2=P3=Ps=ps={n, s}, ps=p7=(n, s, b}, ps=(n, s, f},

When the token in p4 or py is the back type, the transition t4 or tg has to be fired. For P8, a
finish token indicates the completion of the task execution, otherwise, the transition tjo has
to be fired to continue the task processing. We assumed that for every places, the normal
tokens are desired.

For the connection points, the tokens in the output points are assumed to have only
two types: the successful token indicating the task has been well executed and the fail token
indicating the task has been poorly executed. The meaning of "successful” and "fail"
depends the particular criterion selected (i.e., the "fail" do not necessarily means the failure
of the execution) and can vary from coordinator to coordinator. However, we assumed that

successful tokens are more desired than the fail tokens.

The situations for the transitions of the dispatcher now can be summarized as

t1: {n, s}, M;=2

t2: {n, s}2x{succ, fail}>, M,=4;
t3: {n, s}3x{succ, fail}* x{succ, fail}m, M3=§;
ta: {b}4, My=1;

ts: {n, s}4, Ms=2;

ts: {n, s}5 x{succ, fail}* x{succ, fail}s, M¢=8;
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t7: {n, s}5 x{succ, fail}v x{succ, fail}=, M+=8;
tg: (b}, Mg=1;
tg: {n, s}7, Mg=2;
tio: {n, s}3,  Mo=2;
superscripts of {} indicate the places that the tokens in {} belong to. Note that, to simplify
the simulation, we assume that the transition t; treats the three subtasks ey, ,, and ¢, as the
same, otherwise, t; will have 3x8=24 different situations. To further simplify the problem,
itis assumed that the transitions ts, tg, and t; classified the feedbacks from the coordinators
into two classes:
t3: c1={(suss", suss=), (fail*, succ=), suss=}, co={(succr, fail=), (fail*, failm), failm}
tg: c1={(suss", suss*), (fail*, succ), suss*}, co={(succy, fail*), (failv, fails), fails)
t7: ¢;={(suss*, suss=), (fails, suss®), suss=}, c,={(suss*, failm), (fails, failm), failm}
where the superscript of succ or fail indicates where the feedback comes from. Therefore

the numbers of the situations for the transitions t3, t5, and t7 are reduced to M3;=M¢=M7=4.

For the vision coordinator, we only consider the translations in the transitions 16}
and t4. The executions by t; and t4 are also assumed to be always successful, thus the
transitions t3, t4, and t7 will be never be fired. The tokens in the place p; (or the execution
results of ;) can be y; or y,, and the execution result of t4 is either "successful" or "fail",
as already assumed for the output points. The situations for t; and ty are assumed to be

t2: {v1, va}, Ma=2;

ta: (v, v2) x(y1, y2)3, My=4;

The consideration for the sensor coordinator is the same as that for the vision
coordinator, that is, the executions by t; and t4 are assumed to be always successful. The
tokens in the place p; can be z; or z,, and the execution result of t4 is either "successful” or

“fail". The situations for t; and t4 are assumed to be



t2: {s1, 52}, Mp=2;

ta: {s1, 82} x{z1, 22}2, M4=4;

For the motion coordinator, only the translations in the transitons t3 and t; are
considered. Similarly, the executions by t3 and t7 are assumed to be always successful,
thus the transitions t4 tg, and t;g will be never be fired. The execution result of t3 or ty is
either "successful” or "fail", as already assumed for the output points. The situations for t;
and t7 are assumed to be

t3: {my, mp}, Ms=2;

t3: {hy, ha}, Ms=4;

The cost functions for the transitions in the dispatcher are assumed to be

(p2=n, fy=succ) (pz=n, fo=fail) (pz=s, fy=succ) (py=s, fy=fail)

I(ty)= 1 2 2 5
(p3=n, fo=c1)  (p3=n, fo=cz) (p3=s, fo=c1) (p3=s, fo=c2)

I(t2)= 1 2 2 5
(ps=n, fo=succ) (ps=n, fo=fail) (ps=s, fo=succ) (ps=s, fo=fail)

J(ts)= 1 2 2 5
(Ps=n, fo=c1)  (pe=n, fo=c2) (ps=s, fo=ci) (ps=s, fo=c2)

I(te)= 1 2 2 5

that is, when a normal token in the place p; and a successful token in the vision output fg

are observed after the execution of t;, the cost is 1; and when a normal token in the place ps
and a class 2 feedback from the vision output % and the vision output t‘(')‘ are observed after
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the execution of tp, the cost is 2; ..., etc. To model the effects of the transition executions,

we assume the following conditional probabilides

ts:

t:

prob(pz=n Ivy, p1=n)=4/5; prob(ps=n lv, p;=n)=2/5;

prob(pz=n lvq, p1=5)=2/5; prob(p,=n lv,, p1=n)=1/5;

prob(pz=s I*) can determined by prob(p,=s l+)=1 - prob(pz=n l+).

prob(ps=n lu;, ps=n)=4/5; prob(ps=n lu,, pPs=n)=2/5;

prob(ps=n luy, ps=s)=2/5; prob(ps=n lu,, pa=n)=1/5;

prob(ps=s I+) can determined by prob(ps=s Is)=1 - prob(ps=n ls).

prob(ps=n lu;, ny)=4/5; prob(ps=n luy, n;)=3/5; prob(ps=n lus, n;)=2/5;
prob(ps=n luy, np)=3/5; prob(ps=n luy, ny)=2/5; prob(ps=n luz, ny)=1/5;
prob(ps=niu;,n3)=3/10; prob(ps=n luy, n3)=1/5; prob(ps=n lusz, n3)=1/10;
prob(ps=s I+) can determined by prob(p3=s le)=1 - prob(ps=n l).

prob(pg=n luy, ny)=4/5; prob(pe=n luy, n1)=3/5; prob(pg=n lus, ny)=2/5;
prob(ps=n lu;, ny)=3/5; prob(ps=n luz, n2)=2/5; prob(pe=n lus, ny)=1/5;
prob(ps=nlu;,n3)=3/10; prob(ps=n luy, n3)=1/5; prob(ps=n lus, n3)=1/10;
prob(ps=s I*) can determined by prob(pe=s le)=1 - prob(pg=n l).

To simplify the simulation, the translation strings for t5 has been grouped into two

sets u; and uj, and the translation strings for t; or t¢ has been grouped into three sets uy,

u2, and u3. The four situations for t, or tg are also reduced to three cases ny, nz, and ns,

according to the assumed cost functions for two transitions. The reductions are specified as

ts:

ta:

te:

ur={v181, V281, 51}, up={visy, V257, 59);
w={mvy}, u=(myv,y, myvy, my}, us={mavsy, my};
m={(n, 1)}, ny={(n, ¢y, (s, c1)}, n3={(s, cz)};

uy={hys;}, up={hysy, hssy, hy}, us={hssy, hy};
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m={(n, ¢1)}, na=((n, c3), (s, c1)}, n3={(s, ¢2)};

No learning is performed for the internal transitions t3, W, t7, tg, t9, and tyg. The
decision-makings for them are assumed either deterministic or pure random ones, as given

in the following,

ta: prob(ps=nip3=n,fo=c,)=1, prob(ps=slps=n,fo=c; or p3=s,fo=c,) =1,
prob(pa=blp3=s,fo=cy)=1;
t4: prob(py=nlp4=b) = prob(p,=sip4=b) =1/2;
tg: prob(ps=nip7=b) = prob(ps=sip7=b) = prob(ps=blips=b) =1/3;
to: prob(ps=nlp;=n) = prob(pg=slp7=s) = 1 if the task has not been completed;
ti:  prob(py=nlpg=n) = prob(p;=slpg=s) = 1;
for the ransition tg, the completion of the task means no subtasks are left on the input tape

of the dispatcher.

The cost functions for the transitions in the coordinators are assumed to be

vision: J(t2)=1 if pa=y,, J(t2)=0 if pr=yy;
J(te)=1 if p3=succ, J(ty)=0 if pa=fail;

sensor: J(t2)=1 if py=2z5, J(1)=0 if py=2;;
J(t4)=1 if p3=succ, J(t4)=0 if p3=fail;

motion: J(t3)=1 if p3=succ, J(t3)=0 if ps=fail,

J(t7)=1 if ps=succ, J(t;)=0 if ps=fail;

clearly, we assume the execution result ¥1 or z; is more desired that y, or z,.

The effects of the transition executions are assumed as:



vision:

sensor:

motion;

prob(p2=ylvg;, v1) = 4/5, prob(pa=y1lvgs, v;) = 1/5,
prob(pa=y,lvgy, v2) = 1/5, prob(po=y;lvgs, v2) = 4/5;
prob(ps=succlfy, vy, pa=y1)=4/5, prob(ps=succlf,, V1, p2=y1)=3/5,
prob(ps=succlify, vi,pa=y2)=1/2, prob(ps=succlfy,vq,p2=y2)=1/10,
prob(ps=succlfi, v4,p=y;)=1/10, prob(ps=succlf;,v,, p2=y1)=2/5,
prob(ps=succify, v4,pa=y2)=2/5, prob(ps=succlfs,v,ps=y,)=4/5;
prob(p2=z,lsd;, s;) = 4/5, prob(py=2z,lsdy, s1) = 1/5,
prob(p2=zylsdy, s3) = 1/5, prob(pa=z,lsdy, s5) = 4/5:
prob(ps=succlc;, sy, ps=z,)=4/5, prob(ps=succlcy, 51, pa=z;)=3/5,
prob(ps=succlcy, s;,p;=z9)=1/2, prob(ps=succlcy,s;,pr=22)=1/10,
prob(ps=succlcy, $2,p2=21)=1/10, prob(ps=succics,s;, pr=z;)=2/5,
prob(pa=succlc;, s;,p2=27)=2/5, prob(ps=succicy,ss,pr=z;)=4/5;
prob(ps=succll;, m,;)=4/5, prob(ps=succily, m;)=1/5,
prob(pa=succll}, mp)=3/10, prob(ps=succll,, m,)=4/5;
prob(p7=succlk, h;)=4/5, prob(ps=succlk,, h;)=1/5,
prob(pr=succik;, h3)=3/10, prob(pr=succiky, h,)=4/5;

The average costs of the translations under different situations can be calculated as

vision:

sensor:

motion:

J(vgiivy)=0.2°,  J(vg,lv;)=0.8; J(vgi1lv)=0.8, J(vgylvy)=0.2":
J(f1lv1,y1)=0.2°, J(flvy,y,)=0.5" J(f1lv2,y1)=0.9, J(f}lv2,y2)=0.6;
J(falv1,y1)=0.4, J(f3lvy,y2)=0.9; J(f2lv2,y1)=0.6"J(falv4,y2)=0.2%;
J(sdyls1)=0.2°, J(sdyls;)=0.8;  J(sd,ls;)=0.8, J(sdylsp)=0.2%;
J(c1lsy,21)=0.2*, J(cyls;,z7)=0.5" J(c1ls2,21)=0.9, J(cls;,27)=0.6:
J(cals1,21)=0.4, I(cyls;,22)=0.9; J(cals2,21)=0.6"J(cqls2,25)=0.2";
J(111m1)=0.2%, J(15im,)=0.8; J(1;im7)=0.7, J(I3lm;)=0.2";
J(k1h1)=0.2°, J(kath1)=0.8; J(kh2)=0.7, J(kalhy)=0.2";
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where J(wls) is the average cost of the translation w under the situation s and the minimum
average costs at the given situations are marked with °. These average costs indicate that
when the situation v; is observed, the translation vg; ( of tyin the vision coordinator)
should be selected, ..., etc. Since the average costs are actually unknown, the optimal
translations have to be realized through learning by the coordinators.

Since the probabilities of feedbacks are changing with the learning processes in the
coordinators, the average costs for the translations in the dispatcher cannot be calculated.
However, the limit distributions of the feedbacks, that is, the distributions of the feedbacks
after the optimal translations in the coordinators have been learnt, can be found to be

vision: prob(succivy) = 0.8x0.8 + 0.5x0.2 = 0.74,

prob(succivy) = 0.8%0.8 + 0.4x0.2 = 0.72;
Sensor: prob(succls;) = 0.8x0.8 + 0.5x0.2 = 0.74,
prob(succlsy) = 0.8x0.8 + 0.4x0.2 = 0.72;
motion: prob(succim,) = 0.8, prob(succim,) = 0.8;
prob(succih;) = 0.8, prob(succlhy) =0.8;
dispatcher: t;: prob(c;lmyvy)=prob(c,m,v,)=prob(c;Im;)=prob(succim,) = 0.8,
prob(cyImav,)=prob(c,im;v,)=prob(c,Im;)=prob(succims,) = 0.8:
ts: prob(c;lv;sy)=prob(c,lvss;)=prob(c,ls;)=prob(succls,) = 0.74,
prob(cllvlsz)=prob(c1Iv2s2)=prob(c1Isz)=prob(succlsz) =0.72;
ts: prob(cyih;sy)=prob(c,lhys;)=prob(cylhy)=prob(succih;) = 0.8,
prob(c,lhasy )=prob(c, lhs;)=prob(c, thy)=prob(succth,) = 0.8:
assuming that in the ranslation string sets uy, uy, and us, every string in a set is selected

with the equal probability, we can find that, for the dispatcher

ta: prob(cluy)=prob(c,luy)=prob(c,luz)= 0.8;
ts: prob(cylu;) =0.74,  prob(cluy) = 0.72;

tg: prob(cluy)=prob(c,luz)=prob(c,lus)=0.8;
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Therefore, assuming the learning processed in the coordinators have been

completed, the average costs for the translations in the dispatcher now can be calculate as:

ta:

ts:

J (v1Ip1=n)=1x0.8x0.74+2><(0.8x0.26+0.2x0.74)+5x0.2x0.26=1.564‘,
J(v4lp1=n)=1x0.4x0.72+2x(0.4x0.28+0.6x0.72)+5x0.6x0.28=2.216;
J (v1Ip1=s)=1x0.4x0.74+2><(0.4><0.26+0.6><0.74)+5><0.6x0.26=2. 1727,
J (vzlp1=s)=1><0.2x0.72+2><(0.2><0.28+0.8x0.72)+5x0.8x0.28=2.528;
J(uyiny)=1x0.8x0.8+2x(0.8x0.2+0.2x0.8)+5x0.2x0.2=1.48",
J(uziny)=1x0.6x0.8+2x(0.6x0.2+0.4x0.8)+5x0.4x0.2=1.76,
J(u3ln;)=1x0.4x0.8+2x(0.4x0.2+0.6x0.8)+5x0.6x0.2=2.04;
J(u1In9)=1x0.6x0.8+2x(0.6x0.2+0.4x0.8)+5%0.4x0.2=1.76",
J(uzln)=1x0.4x0.8+2x(0.4x0.2+0.6x0.8)+5x0.6x0.2=2.04,
J(u3ing)=1x0.2x0.8+2x(0.2x0.2+0.8x0.8)+5x0.8x0.2=2.32;
J(uyIn3)=1x0.3x0.8+2x(0.3x0.2+0.7x0.8)+5x0.7x0.2=2.18",
J(uzin3)=1x0.2x0.8+2x(0.2x0.2+0.8x0.8)+5x0.8x0.2=2.32,
J(u3ln3)=1%0.1x0.8+2x(0.1x0.2+0.9x0.8)+5x0.9%0.2=2.46;
J(u1lp4=n)=1x0.8x0.74+2x(0.8%x0.26+0.2x0.74)+5x0.2x0.26=1.564",
J(ualps=n)=1x0.4x0.72+2x(0.4x0.28+0.6x0.72)+5x0.6x0.28=2.216;
J(ulpa=s)=1x0.4x0.74+2x(0.4%x0.26+0.6x0.74)+5x0.6x0.26=2.172°,
J(ualpsa=s)=1x0.2x0.72+2x(0.2x0.28+0.8x0.72)+5x0.8x0.28=2.528;
J(u1iny)=1x0.8x0.8+2x(0.8x0.2+0.2x0.8)+5x0.2x0.2=1.48",
J(upin;)=1x0.6x0.8+2x(0.6x0.2+0.4x0.8)+5x0.4x0.2=1.76,
J(us3lny)=1x0.4x0.8+2x(0.4x0.2+0.6x0.8)+5x0.6x0.2=2.04;
J(u1In2)=1x0.6x0.8+2x(0.6x0.2+0.4x0.8)+5x0.4x0.2=1.76",
J(u2ln)=1x0.4x0.8+2x(0.4x0.2+0.6x0.8)+5x0.6x0.2=2.04,
J(u3lny)=1x0.2x0.8+2x(0.2x0.2+0.8%0.8)+5x0.8x0.2=2.32;
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J(u1In3)=1%0.3%0.8+2x(0.3x0.2+0.7x0.8)+5x0.7x0.2=2.18",

J(usaln3)=1x0.2x0.8+2x(0.2x0.2+0.8x0.8)+5x0.8x0.2=2.32,

J(u3in3)=1x0.1x0.8+2x(0.1x0.2+0.9%0.8)+5x0.9x0.2=2.46;
The minimum average costs in the limit case at the given situations are marked with *. The
minimum average costs indicate that, when the learning time for the coordinators is longer
enough, for any situations, the transitions ty, ty, ts, and tg should selected the first
translation or the translations in the first translation set. Again, since the average costs are
actually unknown, the optimal translations have to be realized through leaming by the
dispatcher. It should also be pointed out that the learning of the dispatcher depends the

learning of the coordinators.

B, Simulation Results: The zero initial cost and the uniform initial subjective
probabilities used for all the translations. Also, the B and v of the form

B =7 () =

are used in the performance estimation and the subjective probability update algorithms for

all the translations. Note that the B and y selected satisfy Dvoretsky's convergence

conditions.

The following four task strings from the Organization Level are used as the inputs
to the dispatcher in the simuladon
31=C€5€4€2€5€4€3€5¢4€1,
S2=€se4€2€4€3€4€1,
$3=C5€4€2€5€4¢€3€4€1,

S4=€5€4€2€4€3€5€4€.
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These strings are defined based on the example by Valavanis (1986). To process these
strings, the initial mark of the dispatcher is settled up to be two tokens in the place P1, and
no token in all other places. Each of the two initial tokens can be either a normal token or a
special token with the equal probability 0.5. The scheduling procedure described in the

secton 5.1 is used for the task scheduling in the simulation.

Figure 6.6-6.12 in Appendix give the simulation results of executing each of the
tasks sy, S2, $3, and s4 ten times. The total number of task executions, therefore, is 40.
Comparing the learning curves of the coordinators in Figure 6.6-12 and the learning curves
of the dispatcher in Figure 6.13-18, we can see clearly that the learning speeds in the
coordinators are much fast than the learning speeds in the dispatcher. This can be explained
by the fact that the learning in the dispatcher depends on the learning in the coordinators. It
seems that the dispatcher can leam its optimal translations only after the coordinators have
learnt their optimal translations. Figures 6.19-6.22 describe the changes of the total pure
translation entropies of the dispatcher and the coordinators. The situation distributions
appeared in the calculation of the pure translation entropies are replaced by the
corresponding frequencies in which situations occurred so far, since the real values are
unknown (see the section 5.2 for their calculadons). These Figures indicate that the
learning can reduce the pure translation entropies. Again, the entropy reducing speed of the
dispatcher is much slow than that of the coordinators. Note that the behaviors of the vision
and the sensor coordinators are very similar, since the same structure, cost functions, and

probabilities are used for both of them.
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7. Conclusions and Future Researches

The work reported above is just the first step toward the establishment of a
complete analytic model for the Coordination Level of Intelligent Machines. However, it
does reflect the basic features of the model to be completed. Upon to this stage, the two

most difficult issues appeared in the research are

1. The gap between the theory and the reality of current robotic
systems. Since the controls at the Coordination Level of the
known robotic systems are deterministic, it is not clear how to
apply the probabilistic task translation for the current available

robotic systems.

2. The establishment of an overall control formulation.The effort to
use Entropy as the overall control formulations had been made,
however, the desired result is not achieved. The entropy is used
passively in this report, that is, just as an index to measure the
learning process, not actively used as a performance index to
guide the task transladon. Therefore some overall control

formulation for the Coordination Level is still to be found.

The following research focuses are suggested to be on

1. Develop a stepwise refinement method for the design of bounded

and live Petri net models for the dispatcher and coordinators.



e e e [

Some results have already been obtained. We hope to used this
stepwise method to expand the models constructed in the case

study, therefore to make a more realistic simulations;

2. Investigate the scheduling problem with time factor [Shen 1988];

3. Use the concepts developed in [Lauer and Campbell 1975] and
[Nehmer 1975] to build a general dispatcher, which is
applicable to a class of coordination activities, and use the Petri

net to model it;

4. See the possibility of introducing new learning algorithms.

5. Find some overall control formulations for the coordination level.
Based on what we already obtained, the team theoretic
formulation is the most promising one. However, the
difficulties rely on the way of describing the effects of transition
execution on each other and the chose of an overall cost
functon, as required in the team-like theories. The team
formulation for integration, coordination of multi-sensor robot
system in [Durrant-Whyte 1987] and the intelligent control
method suggested in [Cruz and Stubberud 1987] are very good
references in this regard.

The focus S will be the main research focus in the next semester.
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